Cargando…
A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study
BACKGROUND: The ever-increasing volume of medical literature necessitates the classification of medical literature. Medical relation extraction is a typical method of classifying a large volume of medical literature. With the development of arithmetic power, medical relation extraction models have e...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382554/ https://www.ncbi.nlm.nih.gov/pubmed/35917162 http://dx.doi.org/10.2196/37817 |
_version_ | 1784769308192145408 |
---|---|
author | Tang, Wentai Wang, Jian Lin, Hongfei Zhao, Di Xu, Bo Zhang, Yijia Yang, Zhihao |
author_facet | Tang, Wentai Wang, Jian Lin, Hongfei Zhao, Di Xu, Bo Zhang, Yijia Yang, Zhihao |
author_sort | Tang, Wentai |
collection | PubMed |
description | BACKGROUND: The ever-increasing volume of medical literature necessitates the classification of medical literature. Medical relation extraction is a typical method of classifying a large volume of medical literature. With the development of arithmetic power, medical relation extraction models have evolved from rule-based models to neural network models. The single neural network model discards the shallow syntactic information while discarding the traditional rules. Therefore, we propose a syntactic information–based classification model that complements and equalizes syntactic information to enhance the model. OBJECTIVE: We aim to complete a syntactic information–based relation extraction model for more efficient medical literature classification. METHODS: We devised 2 methods for enhancing syntactic information in the model. First, we introduced shallow syntactic information into the convolutional neural network to enhance nonlocal syntactic interactions. Second, we devise a cross-domain pruning method to equalize local and nonlocal syntactic interactions. RESULTS: We experimented with 3 data sets related to the classification of medical literature. The F1 values were 65.5% and 91.5% on the BioCreative ViCPR (CPR) and Phenotype-Gene Relationship data sets, respectively, and the accuracy was 88.7% on the PubMed data set. Our model outperforms the current state-of-the-art baseline model in the experiments. CONCLUSIONS: Our model based on syntactic information effectively enhances medical relation extraction. Furthermore, the results of the experiments show that shallow syntactic information helps obtain nonlocal interaction in sentences and effectively reinforces syntactic features. It also provides new ideas for future research directions. |
format | Online Article Text |
id | pubmed-9382554 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-93825542022-08-18 A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study Tang, Wentai Wang, Jian Lin, Hongfei Zhao, Di Xu, Bo Zhang, Yijia Yang, Zhihao JMIR Med Inform Original Paper BACKGROUND: The ever-increasing volume of medical literature necessitates the classification of medical literature. Medical relation extraction is a typical method of classifying a large volume of medical literature. With the development of arithmetic power, medical relation extraction models have evolved from rule-based models to neural network models. The single neural network model discards the shallow syntactic information while discarding the traditional rules. Therefore, we propose a syntactic information–based classification model that complements and equalizes syntactic information to enhance the model. OBJECTIVE: We aim to complete a syntactic information–based relation extraction model for more efficient medical literature classification. METHODS: We devised 2 methods for enhancing syntactic information in the model. First, we introduced shallow syntactic information into the convolutional neural network to enhance nonlocal syntactic interactions. Second, we devise a cross-domain pruning method to equalize local and nonlocal syntactic interactions. RESULTS: We experimented with 3 data sets related to the classification of medical literature. The F1 values were 65.5% and 91.5% on the BioCreative ViCPR (CPR) and Phenotype-Gene Relationship data sets, respectively, and the accuracy was 88.7% on the PubMed data set. Our model outperforms the current state-of-the-art baseline model in the experiments. CONCLUSIONS: Our model based on syntactic information effectively enhances medical relation extraction. Furthermore, the results of the experiments show that shallow syntactic information helps obtain nonlocal interaction in sentences and effectively reinforces syntactic features. It also provides new ideas for future research directions. JMIR Publications 2022-08-02 /pmc/articles/PMC9382554/ /pubmed/35917162 http://dx.doi.org/10.2196/37817 Text en ©Wentai Tang, Jian Wang, Hongfei Lin, Di Zhao, Bo Xu, Yijia Zhang, Zhihao Yang. Originally published in JMIR Medical Informatics (https://medinform.jmir.org), 02.08.2022. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete bibliographic information, a link to the original publication on https://medinform.jmir.org/, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Tang, Wentai Wang, Jian Lin, Hongfei Zhao, Di Xu, Bo Zhang, Yijia Yang, Zhihao A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study |
title | A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study |
title_full | A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study |
title_fullStr | A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study |
title_full_unstemmed | A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study |
title_short | A Syntactic Information–Based Classification Model for Medical Literature: Algorithm Development and Validation Study |
title_sort | syntactic information–based classification model for medical literature: algorithm development and validation study |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382554/ https://www.ncbi.nlm.nih.gov/pubmed/35917162 http://dx.doi.org/10.2196/37817 |
work_keys_str_mv | AT tangwentai asyntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT wangjian asyntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT linhongfei asyntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT zhaodi asyntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT xubo asyntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT zhangyijia asyntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT yangzhihao asyntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT tangwentai syntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT wangjian syntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT linhongfei syntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT zhaodi syntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT xubo syntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT zhangyijia syntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy AT yangzhihao syntacticinformationbasedclassificationmodelformedicalliteraturealgorithmdevelopmentandvalidationstudy |