Cargando…
Bayesian Geostatistical Modeling to Assess Malaria Seasonality and Monthly Incidence Risk in Eswatini
Eswatini is on the brink of malaria elimination and had however, had to shift its target year to eliminate malaria on several occasions since 2015 as the country struggled to achieve its zero malaria goal. We conducted a Bayesian geostatistical modeling study using malaria case data. A Bayesian dist...
Autores principales: | Dlamini, Sabelo Nick, Fall, Ibrahima Socé, Mabaso, Sizwe Doctor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382628/ https://www.ncbi.nlm.nih.gov/pubmed/35976542 http://dx.doi.org/10.1007/s44197-022-00054-4 |
Ejemplares similares
-
Predicting COVID-19 Infections in Eswatini Using the Maximum Likelihood Estimation Method
por: Dlamini, Sabelo Nick, et al.
Publicado: (2022) -
Spatial risk assessment of an emerging pandemic under data scarcity: A case of COVID-19 in Eswatini
por: Dlamini, Wisdom M., et al.
Publicado: (2020) -
Bayesian network-based spatial predictive modelling reveals COVID-19 transmission dynamics in Eswatini
por: Dlamini, Wisdom M. D., et al.
Publicado: (2021) -
Factors associated with prognostic or treatment outcomes in HIV/AIDS patients with and without hypertension in Eswatini
por: Dlamini, Sabelo Bonginkosi, et al.
Publicado: (2021) -
Bayesian Geostatistical Modeling of Leishmaniasis Incidence in Brazil
por: Karagiannis-Voules, Dimitrios-Alexios, et al.
Publicado: (2013)