Cargando…
Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: comparing common clinical risk scores and machine learning algorithms
AIMS: Diversified cardiovascular/non-cardiovascular multi-morbid risk and efficient machine learning algorithms may facilitate improvements in stroke risk prediction, especially in newly diagnosed non-anticoagulated atrial fibrillation (AF) patients where initial decision-making on stroke prevention...
Autores principales: | Lip, Gregory Y H, Tran, George, Genaidy, Ash, Marroquin, Patricia, Estes, Cara, Landsheft, Jeremy |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382661/ https://www.ncbi.nlm.nih.gov/pubmed/33999139 http://dx.doi.org/10.1093/ehjqcco/qcab037 |
Ejemplares similares
-
Incident atrial fibrillation and its risk prediction in patients developing COVID-19: A machine learning based algorithm approach
por: Lip, Gregory Y.H., et al.
Publicado: (2021) -
Revisiting the dynamic risk profile of cardiovascular/non‐cardiovascular multimorbidity in incident atrial fibrillation patients and five cardiovascular/non‐cardiovascular outcomes: A machine‐learning approach
por: Lip, Gregory Y. H., et al.
Publicado: (2021) -
Incidence and Complications of Atrial Fibrillation in a Low Socioeconomic and High Disability United States (US) Population: A Combined Statistical and Machine Learning Approach
por: Lip, Gregory Y. H., et al.
Publicado: (2022) -
Cardiovascular disease (CVD) outcomes and associated risk factors in a medicare population without prior CVD history: an analysis using statistical and machine learning algorithms
por: Lip, Gregory Yoke Hong, et al.
Publicado: (2023) -
Patients' Perceptions of Atrial Fibrillation, Stroke Risk, and Oral Anticoagulation Treatment: An International Survey
por: Lane, Deirdre A., et al.
Publicado: (2018)