Cargando…
Enhanced development of functional human NK cells in NOD‐ scid‐IL2rg(null) mice expressing human IL15
Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383543/ https://www.ncbi.nlm.nih.gov/pubmed/35959876 http://dx.doi.org/10.1096/fj.202200045R |
_version_ | 1784769400463687680 |
---|---|
author | Aryee, Ken‐Edwin Burzenski, Lisa M. Yao, Li‐Chin Keck, James G. Greiner, Dale L. Shultz, Leonard D. Brehm, Michael A. |
author_facet | Aryee, Ken‐Edwin Burzenski, Lisa M. Yao, Li‐Chin Keck, James G. Greiner, Dale L. Shultz, Leonard D. Brehm, Michael A. |
author_sort | Aryee, Ken‐Edwin |
collection | PubMed |
description | Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno‐oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD‐scid‐IL2rg ( null ) (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG‐Tg(Hu‐IL15). Following hematopoietic stem cell engraftment of NSG‐Tg(Hu‐IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)‐engrafted NSG‐Tg(Hu‐IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient‐derived xenograft (PDX) melanoma were significantly delayed in HSC‐engrafted NSG‐Tg(Hu‐IL15) mice as compared to HSC‐engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC‐engrafted NSG‐Tg(Hu‐IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors. |
format | Online Article Text |
id | pubmed-9383543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93835432023-01-06 Enhanced development of functional human NK cells in NOD‐ scid‐IL2rg(null) mice expressing human IL15 Aryee, Ken‐Edwin Burzenski, Lisa M. Yao, Li‐Chin Keck, James G. Greiner, Dale L. Shultz, Leonard D. Brehm, Michael A. FASEB J Research Articles Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno‐oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD‐scid‐IL2rg ( null ) (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG‐Tg(Hu‐IL15). Following hematopoietic stem cell engraftment of NSG‐Tg(Hu‐IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)‐engrafted NSG‐Tg(Hu‐IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient‐derived xenograft (PDX) melanoma were significantly delayed in HSC‐engrafted NSG‐Tg(Hu‐IL15) mice as compared to HSC‐engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC‐engrafted NSG‐Tg(Hu‐IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors. John Wiley and Sons Inc. 2022-08-12 2022-09 /pmc/articles/PMC9383543/ /pubmed/35959876 http://dx.doi.org/10.1096/fj.202200045R Text en © 2022 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Aryee, Ken‐Edwin Burzenski, Lisa M. Yao, Li‐Chin Keck, James G. Greiner, Dale L. Shultz, Leonard D. Brehm, Michael A. Enhanced development of functional human NK cells in NOD‐ scid‐IL2rg(null) mice expressing human IL15 |
title | Enhanced development of functional human NK cells in NOD‐
scid‐IL2rg(null)
mice expressing human IL15
|
title_full | Enhanced development of functional human NK cells in NOD‐
scid‐IL2rg(null)
mice expressing human IL15
|
title_fullStr | Enhanced development of functional human NK cells in NOD‐
scid‐IL2rg(null)
mice expressing human IL15
|
title_full_unstemmed | Enhanced development of functional human NK cells in NOD‐
scid‐IL2rg(null)
mice expressing human IL15
|
title_short | Enhanced development of functional human NK cells in NOD‐
scid‐IL2rg(null)
mice expressing human IL15
|
title_sort | enhanced development of functional human nk cells in nod‐
scid‐il2rg(null)
mice expressing human il15 |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383543/ https://www.ncbi.nlm.nih.gov/pubmed/35959876 http://dx.doi.org/10.1096/fj.202200045R |
work_keys_str_mv | AT aryeekenedwin enhanceddevelopmentoffunctionalhumannkcellsinnodscidil2rgnullmiceexpressinghumanil15 AT burzenskilisam enhanceddevelopmentoffunctionalhumannkcellsinnodscidil2rgnullmiceexpressinghumanil15 AT yaolichin enhanceddevelopmentoffunctionalhumannkcellsinnodscidil2rgnullmiceexpressinghumanil15 AT keckjamesg enhanceddevelopmentoffunctionalhumannkcellsinnodscidil2rgnullmiceexpressinghumanil15 AT greinerdalel enhanceddevelopmentoffunctionalhumannkcellsinnodscidil2rgnullmiceexpressinghumanil15 AT shultzleonardd enhanceddevelopmentoffunctionalhumannkcellsinnodscidil2rgnullmiceexpressinghumanil15 AT brehmmichaela enhanceddevelopmentoffunctionalhumannkcellsinnodscidil2rgnullmiceexpressinghumanil15 |