Cargando…

Wave-like behaviour in (0,1) binary sequences

A comprehensive study of the properties of finite (0,1) binary systems from the mathematical viewpoint of quantum theory is presented. This is a quantum-inspired extension of the GenomeBits model to characterize observed genome sequences, where a complex wavefunction [Formula: see text] is considere...

Descripción completa

Detalles Bibliográficos
Autor principal: Canessa, Enrique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383675/
https://www.ncbi.nlm.nih.gov/pubmed/35978136
http://dx.doi.org/10.1038/s41598-022-18360-z
Descripción
Sumario:A comprehensive study of the properties of finite (0,1) binary systems from the mathematical viewpoint of quantum theory is presented. This is a quantum-inspired extension of the GenomeBits model to characterize observed genome sequences, where a complex wavefunction [Formula: see text] is considered as an analogous probability measure and it is related to an alternating (0,1) binary series having independent distributed terms. The real and imaginary spectrum of [Formula: see text] vs. the nucleotide base positions display characteristic features of sound waves. This approach represents a novel perspective for identifying and “observing” emergent properties of genome sequences in the form of wavefunctions via superposition states. The motivation is to develop a simple algorithm to perform wave calculations from binary sequences and to apply these wave functions to sonification.