Cargando…
Unsupervised clustering of SARS-CoV-2 using deep convolutional autoencoder
SARS-CoV-2’s population structure might have a substantial impact on public health management and diagnostics if it can be identified. It is critical to rapidly monitor and characterize their lineages circulating globally for a more accurate diagnosis, improved care, and faster treatment. For a clea...
Autores principales: | Sherif, Fayroz F., Ahmed, Khaled S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9383682/ http://dx.doi.org/10.1186/s44147-022-00125-0 |
Ejemplares similares
-
Investigating Beta-Variational Convolutional Autoencoders for the Unsupervised Classification of Chest Pneumonia
por: Akila, Serag Mohamed, et al.
Publicado: (2023) -
Unsupervised feature learning for electrocardiogram data using the convolutional variational autoencoder
por: Jang, Jong-Hwan, et al.
Publicado: (2021) -
An Unsupervised Deep Feature Learning Model Based on Parallel Convolutional Autoencoder for Intelligent Fault Diagnosis of Main Reducer
por: Ye, Qing, et al.
Publicado: (2021) -
Convolutional Autoencoding and Gaussian Mixture Clustering for Unsupervised Beat-to-Beat Heart Rate Estimation of Electrocardiograms from Wearable Sensors
por: Zhong, Jun, et al.
Publicado: (2021) -
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
por: Sajadi, Seyedeh Zahra, et al.
Publicado: (2021)