Cargando…
Predicting COVID-19 disease severity from SARS-CoV-2 spike protein sequence by mixed effects machine learning
Epidemiological studies show that COVID-19 variants-of-concern, like Delta and Omicron, pose different risks for severe disease, but they typically lack sequence-level information for the virus. Studies which do obtain viral genome sequences are generally limited in time, location, and population sc...
Autores principales: | Sokhansanj, Bahrad A., Rosen, Gail L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384346/ https://www.ncbi.nlm.nih.gov/pubmed/36041271 http://dx.doi.org/10.1016/j.compbiomed.2022.105969 |
Ejemplares similares
-
Interpretable and Predictive Deep Neural Network Modeling of the SARS-CoV-2 Spike Protein Sequence to Predict COVID-19 Disease Severity
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022) -
Mapping Data to Deep Understanding: Making the Most of the Deluge of SARS-CoV-2 Genome Sequences
por: Sokhansanj, Bahrad A., et al.
Publicado: (2022) -
Genetic grouping of SARS-CoV-2 coronavirus sequences using informative subtype markers for pandemic spread visualization
por: Zhao, Zhengqiao, et al.
Publicado: (2020) -
Amino Acid k-mer Feature Extraction for Quantitative Antimicrobial Resistance (AMR) Prediction by Machine Learning and Model Interpretation for Biological Insights
por: ValizadehAslani, Taha, et al.
Publicado: (2020) -
Complet+: a computationally scalable method to improve completeness of large-scale protein sequence clustering
por: Nguyen, Rachel, et al.
Publicado: (2023)