Cargando…

Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes

Lithium (Li) dendrite growth is a long-standing challenge leading to short cycle life and safety issues in Li metal batteries. Li dendrite growth is kinetically controlled by ion transport, the concentration gradient, and the local electric field. In this study, an internal electric field is generat...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Yue, Wu, Feng, Chen, Nan, Ma, Yitian, Yang, Chao, Shang, Yanxin, Liu, Hanxiao, Li, Li, Chen, Renjie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384804/
https://www.ncbi.nlm.nih.gov/pubmed/36093012
http://dx.doi.org/10.1039/d2sc03313e
_version_ 1784769468303409152
author Ma, Yue
Wu, Feng
Chen, Nan
Ma, Yitian
Yang, Chao
Shang, Yanxin
Liu, Hanxiao
Li, Li
Chen, Renjie
author_facet Ma, Yue
Wu, Feng
Chen, Nan
Ma, Yitian
Yang, Chao
Shang, Yanxin
Liu, Hanxiao
Li, Li
Chen, Renjie
author_sort Ma, Yue
collection PubMed
description Lithium (Li) dendrite growth is a long-standing challenge leading to short cycle life and safety issues in Li metal batteries. Li dendrite growth is kinetically controlled by ion transport, the concentration gradient, and the local electric field. In this study, an internal electric field is generated between the anode and Au-modified separator to eliminate the concentration gradient of Li(+). The Li–Au alloy is formed during the first cycle of Li plating/stripping, which causes Li(+) deposition on the Au-modified side and lithium anode electrode, reversing the lithium dendrite growth direction. The electrically coupled Li metal electrode and Au-modified film create a uniform electric potential and Li(+) concentration distribution, resulting in reduced concentration polarization and stable Li deposition. As a result, the Au-modified separator improves the lifespan of Li‖Li batteries; the Li‖LiFePO(4) cells show excellent capacity retention (>97.8% after 350 cycles), and Li‖LiNi(0.8)Co(0.1)Mn(0.1)O(2) cells deliver 75.1% capacity retention for more than 300 cycles at 1C rate. This strategy offers an efficient approach for commercial application in advanced metallic Li batteries.
format Online
Article
Text
id pubmed-9384804
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-93848042022-09-08 Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes Ma, Yue Wu, Feng Chen, Nan Ma, Yitian Yang, Chao Shang, Yanxin Liu, Hanxiao Li, Li Chen, Renjie Chem Sci Chemistry Lithium (Li) dendrite growth is a long-standing challenge leading to short cycle life and safety issues in Li metal batteries. Li dendrite growth is kinetically controlled by ion transport, the concentration gradient, and the local electric field. In this study, an internal electric field is generated between the anode and Au-modified separator to eliminate the concentration gradient of Li(+). The Li–Au alloy is formed during the first cycle of Li plating/stripping, which causes Li(+) deposition on the Au-modified side and lithium anode electrode, reversing the lithium dendrite growth direction. The electrically coupled Li metal electrode and Au-modified film create a uniform electric potential and Li(+) concentration distribution, resulting in reduced concentration polarization and stable Li deposition. As a result, the Au-modified separator improves the lifespan of Li‖Li batteries; the Li‖LiFePO(4) cells show excellent capacity retention (>97.8% after 350 cycles), and Li‖LiNi(0.8)Co(0.1)Mn(0.1)O(2) cells deliver 75.1% capacity retention for more than 300 cycles at 1C rate. This strategy offers an efficient approach for commercial application in advanced metallic Li batteries. The Royal Society of Chemistry 2022-07-15 /pmc/articles/PMC9384804/ /pubmed/36093012 http://dx.doi.org/10.1039/d2sc03313e Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/
spellingShingle Chemistry
Ma, Yue
Wu, Feng
Chen, Nan
Ma, Yitian
Yang, Chao
Shang, Yanxin
Liu, Hanxiao
Li, Li
Chen, Renjie
Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes
title Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes
title_full Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes
title_fullStr Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes
title_full_unstemmed Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes
title_short Reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes
title_sort reversing the dendrite growth direction and eliminating the concentration polarization via an internal electric field for stable lithium metal anodes
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384804/
https://www.ncbi.nlm.nih.gov/pubmed/36093012
http://dx.doi.org/10.1039/d2sc03313e
work_keys_str_mv AT mayue reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT wufeng reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT chennan reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT mayitian reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT yangchao reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT shangyanxin reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT liuhanxiao reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT lili reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes
AT chenrenjie reversingthedendritegrowthdirectionandeliminatingtheconcentrationpolarizationviaaninternalelectricfieldforstablelithiummetalanodes