Cargando…
Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance
Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (>...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer Health
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384944/ https://www.ncbi.nlm.nih.gov/pubmed/35952322 http://dx.doi.org/10.1200/PO.22.00048 |
_version_ | 1784769490147344384 |
---|---|
author | Ogura, Koichi Elkrief, Arielle Bowman, Anita S. Koche, Richard P. de Stanchina, Elisa Benayed, Ryma Mauguen, Audrey Mattar, Marissa S. Khodos, Inna Meyers, Paul A. Healey, John H. Tap, William D. Hameed, Meera Zehir, Ahmet Shukla, Neerav Sawyers, Charles Bose, Rohit Slotkin, Emily Ladanyi, Marc |
author_facet | Ogura, Koichi Elkrief, Arielle Bowman, Anita S. Koche, Richard P. de Stanchina, Elisa Benayed, Ryma Mauguen, Audrey Mattar, Marissa S. Khodos, Inna Meyers, Paul A. Healey, John H. Tap, William D. Hameed, Meera Zehir, Ahmet Shukla, Neerav Sawyers, Charles Bose, Rohit Slotkin, Emily Ladanyi, Marc |
author_sort | Ogura, Koichi |
collection | PubMed |
description | Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (> 18 years) and more patients with advanced stage at presentation than previous genomic cohorts. METHODS: The data set consisted of patients with ES prospectively tested with the US Food and Drug Administration–cleared Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets large panel, hybrid capture-based next-generation sequencing assay. To assess the functional significance of ERF loss, we generated ES cell lines with increased expression of ERF and lines with knockdown of ERF. We assessed cell viability, clonogenic growth, and motility in these ES lines and performed transcriptomic and epigenetic analyses. Finally, we validated our findings in vivo using cell line xenografts. RESULTS: Novel subsets were defined by recurrent secondary alterations in ERF, which encodes an ETS domain transcriptional repressor, in 7% of patients (five truncating mutations, one deep deletion, and two missense mutations) and in FGFR1 in another 2.7% (one amplification and two known activating mutations). ERF alterations were nonoverlapping with STAG2 alterations. In vitro, increased expression of ERF decreased tumor cell growth, colony formation, and motility in two ES cell lines, whereas ERF loss induced cellular proliferation and clonogenic growth. Transcriptomic analysis of cell lines with ERF loss revealed an increased expression of genes and pathways associated with aggressive tumor biology, and epigenetic, chromatin-based studies revealed that ERF competes with EWSR1-FLI1 at ETS-binding sites. CONCLUSION: Our findings open avenues to new insights into ES pathobiology and to novel therapeutic approaches in a subset of patients with ES. |
format | Online Article Text |
id | pubmed-9384944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Wolters Kluwer Health |
record_format | MEDLINE/PubMed |
spelling | pubmed-93849442022-08-18 Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance Ogura, Koichi Elkrief, Arielle Bowman, Anita S. Koche, Richard P. de Stanchina, Elisa Benayed, Ryma Mauguen, Audrey Mattar, Marissa S. Khodos, Inna Meyers, Paul A. Healey, John H. Tap, William D. Hameed, Meera Zehir, Ahmet Shukla, Neerav Sawyers, Charles Bose, Rohit Slotkin, Emily Ladanyi, Marc JCO Precis Oncol ORIGINAL REPORTS Ewing sarcoma (ES) is a primitive sarcoma defined by EWSR1-ETS fusions as the primary driver alteration. To better define the landscape of cooperating secondary genetic alterations in ES, we analyzed clinical genomic profiling data of 113 patients with ES, a cohort including more adult patients (> 18 years) and more patients with advanced stage at presentation than previous genomic cohorts. METHODS: The data set consisted of patients with ES prospectively tested with the US Food and Drug Administration–cleared Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets large panel, hybrid capture-based next-generation sequencing assay. To assess the functional significance of ERF loss, we generated ES cell lines with increased expression of ERF and lines with knockdown of ERF. We assessed cell viability, clonogenic growth, and motility in these ES lines and performed transcriptomic and epigenetic analyses. Finally, we validated our findings in vivo using cell line xenografts. RESULTS: Novel subsets were defined by recurrent secondary alterations in ERF, which encodes an ETS domain transcriptional repressor, in 7% of patients (five truncating mutations, one deep deletion, and two missense mutations) and in FGFR1 in another 2.7% (one amplification and two known activating mutations). ERF alterations were nonoverlapping with STAG2 alterations. In vitro, increased expression of ERF decreased tumor cell growth, colony formation, and motility in two ES cell lines, whereas ERF loss induced cellular proliferation and clonogenic growth. Transcriptomic analysis of cell lines with ERF loss revealed an increased expression of genes and pathways associated with aggressive tumor biology, and epigenetic, chromatin-based studies revealed that ERF competes with EWSR1-FLI1 at ETS-binding sites. CONCLUSION: Our findings open avenues to new insights into ES pathobiology and to novel therapeutic approaches in a subset of patients with ES. Wolters Kluwer Health 2022-08-11 /pmc/articles/PMC9384944/ /pubmed/35952322 http://dx.doi.org/10.1200/PO.22.00048 Text en © 2022 by American Society of Clinical Oncology https://creativecommons.org/licenses/by-nc-nd/4.0/Creative Commons Attribution Non-Commercial No Derivatives 4.0 License http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) |
spellingShingle | ORIGINAL REPORTS Ogura, Koichi Elkrief, Arielle Bowman, Anita S. Koche, Richard P. de Stanchina, Elisa Benayed, Ryma Mauguen, Audrey Mattar, Marissa S. Khodos, Inna Meyers, Paul A. Healey, John H. Tap, William D. Hameed, Meera Zehir, Ahmet Shukla, Neerav Sawyers, Charles Bose, Rohit Slotkin, Emily Ladanyi, Marc Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance |
title | Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance |
title_full | Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance |
title_fullStr | Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance |
title_full_unstemmed | Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance |
title_short | Prospective Clinical Genomic Profiling of Ewing Sarcoma: ERF and FGFR1 Mutations as Recurrent Secondary Alterations of Potential Biologic and Therapeutic Relevance |
title_sort | prospective clinical genomic profiling of ewing sarcoma: erf and fgfr1 mutations as recurrent secondary alterations of potential biologic and therapeutic relevance |
topic | ORIGINAL REPORTS |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9384944/ https://www.ncbi.nlm.nih.gov/pubmed/35952322 http://dx.doi.org/10.1200/PO.22.00048 |
work_keys_str_mv | AT ogurakoichi prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT elkriefarielle prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT bowmananitas prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT kocherichardp prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT destanchinaelisa prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT benayedryma prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT mauguenaudrey prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT mattarmarissas prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT khodosinna prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT meyerspaula prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT healeyjohnh prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT tapwilliamd prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT hameedmeera prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT zehirahmet prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT shuklaneerav prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT sawyerscharles prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT boserohit prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT slotkinemily prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance AT ladanyimarc prospectiveclinicalgenomicprofilingofewingsarcomaerfandfgfr1mutationsasrecurrentsecondaryalterationsofpotentialbiologicandtherapeuticrelevance |