Cargando…

Exploration of sensing data to realize intended odor impression using mass spectrum of odor mixture

Recently, olfactory information on odorants has been associated with their corresponding molecular features. Such information has been obtained by predicting the sensory test evaluation scores from the molecular structure parameters or the sensing data. On the other hand, we develop a method of the...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasebe, Daisuke, Alexandre, Manuel, Nakamoto, Takamichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385042/
https://www.ncbi.nlm.nih.gov/pubmed/35976921
http://dx.doi.org/10.1371/journal.pone.0273011
Descripción
Sumario:Recently, olfactory information on odorants has been associated with their corresponding molecular features. Such information has been obtained by predicting the sensory test evaluation scores from the molecular structure parameters or the sensing data. On the other hand, we develop a method of the prediction of molecular features corresponding to the odor impression. We utilize a machine-learning-based odor predictive model introduced in our previous research, and we propose a mathematical model for exploring the sensing data space. By using mass spectrum as sensing data in the predictive model, we can represent predicted mass spectrum as those of an odor mixture, and the mixing ratio can be obtained. We show that the mass spectrum of apple flavor with enhanced ‘fruit’ and ‘sweet’ impressions can be obtained using 59 and 60 molecules respectively by using our analysis method.