Cargando…
Deep learning can predict survival directly from histology in clear cell renal cell carcinoma
For clear cell renal cell carcinoma (ccRCC) risk-dependent diagnostic and therapeutic algorithms are routinely implemented in clinical practice. Artificial intelligence-based image analysis has the potential to improve outcome prediction and thereby risk stratification. Thus, we investigated whether...
Autores principales: | Wessels, Frederik, Schmitt, Max, Krieghoff-Henning, Eva, Kather, Jakob N., Nientiedt, Malin, Kriegmair, Maximilian C., Worst, Thomas S., Neuberger, Manuel, Steeg, Matthias, Popovic, Zoran V., Gaiser, Timo, von Kalle, Christof, Utikal, Jochen S., Fröhling, Stefan, Michel, Maurice S., Nuhn, Philipp, Brinker, Titus J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385058/ https://www.ncbi.nlm.nih.gov/pubmed/35976907 http://dx.doi.org/10.1371/journal.pone.0272656 |
Ejemplares similares
-
A self-supervised vision transformer to predict survival from histopathology in renal cell carcinoma
por: Wessels, Frederik, et al.
Publicado: (2023) -
Uncertainty Estimation in Medical Image Classification: Systematic Review
por: Kurz, Alexander, et al.
Publicado: (2022) -
Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
por: Schmitt, Max, et al.
Publicado: (2021) -
Changes in neutrophile-to-lymphocyte ratio as predictive and prognostic biomarker in metastatic prostate cancer treated with taxane-based chemotherapy
por: Neuberger, Manuel, et al.
Publicado: (2022) -
An m6A-Driven Prognostic Marker Panel for Renal Cell Carcinoma Based on the First Transcriptome-Wide m6A-seq
por: Waldbillig, Frank, et al.
Publicado: (2023)