Cargando…
A hybrid model integrating long short-term memory with adaptive genetic algorithm based on individual ranking for stock index prediction
Modeling and forecasting stock prices have been important financial research topics in academia. This study seeks to determine whether improvements can be achieved by forecasting a stock index using a hybrid model and incorporating financial variables. We extend the literature on stock market foreca...
Autores principales: | Zeng, Xiaohua, Cai, Jieping, Liang, Changzhou, Yuan, Chiping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385067/ https://www.ncbi.nlm.nih.gov/pubmed/35976906 http://dx.doi.org/10.1371/journal.pone.0272637 |
Ejemplares similares
-
Prediction of stock price movement using an improved NSGA-II-RF algorithm with a three-stage feature engineering process
por: Zeng, Xiaohua, et al.
Publicado: (2023) -
An adaptive particle swarm optimization-based hybrid long short-term memory model for stock price time series forecasting
por: Kumar, Gourav, et al.
Publicado: (2022) -
Sparrow Search Algorithm-Optimized Long Short-Term Memory Model for Stock Trend Prediction
por: Liu, Feiyang, et al.
Publicado: (2022) -
Artificial Neural Network and Genetic Algorithm Hybrid Intelligence for Predicting Thai Stock Price Index Trend
por: Inthachot, Montri, et al.
Publicado: (2016) -
Stock index trend prediction based on TabNet feature selection and long short-term memory
por: Wei, Xiaolu, et al.
Publicado: (2022)