Cargando…

Shell microelectrode arrays (MEAs) for brain organoids

Brain organoids are important models for mimicking some three-dimensional (3D) cytoarchitectural and functional aspects of the brain. Multielectrode arrays (MEAs) that enable recording and stimulation of activity from electrogenic cells offer notable potential for interrogating brain organoids. Howe...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Qi, Tang, Bohao, Romero, July Carolina, Yang, Yuqian, Elsayed, Saifeldeen Khalil, Pahapale, Gayatri, Lee, Tien-Jung, Morales Pantoja, Itzy E., Han, Fang, Berlinicke, Cynthia, Xiang, Terry, Solazzo, Mallory, Hartung, Thomas, Qin, Zhao, Caffo, Brian S., Smirnova, Lena, Gracias, David H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385157/
https://www.ncbi.nlm.nih.gov/pubmed/35977026
http://dx.doi.org/10.1126/sciadv.abq5031
_version_ 1784769536682098688
author Huang, Qi
Tang, Bohao
Romero, July Carolina
Yang, Yuqian
Elsayed, Saifeldeen Khalil
Pahapale, Gayatri
Lee, Tien-Jung
Morales Pantoja, Itzy E.
Han, Fang
Berlinicke, Cynthia
Xiang, Terry
Solazzo, Mallory
Hartung, Thomas
Qin, Zhao
Caffo, Brian S.
Smirnova, Lena
Gracias, David H.
author_facet Huang, Qi
Tang, Bohao
Romero, July Carolina
Yang, Yuqian
Elsayed, Saifeldeen Khalil
Pahapale, Gayatri
Lee, Tien-Jung
Morales Pantoja, Itzy E.
Han, Fang
Berlinicke, Cynthia
Xiang, Terry
Solazzo, Mallory
Hartung, Thomas
Qin, Zhao
Caffo, Brian S.
Smirnova, Lena
Gracias, David H.
author_sort Huang, Qi
collection PubMed
description Brain organoids are important models for mimicking some three-dimensional (3D) cytoarchitectural and functional aspects of the brain. Multielectrode arrays (MEAs) that enable recording and stimulation of activity from electrogenic cells offer notable potential for interrogating brain organoids. However, conventional MEAs, initially designed for monolayer cultures, offer limited recording contact area restricted to the bottom of the 3D organoids. Inspired by the shape of electroencephalography caps, we developed miniaturized wafer-integrated MEA caps for organoids. The optically transparent shells are composed of self-folding polymer leaflets with conductive polymer–coated metal electrodes. Tunable folding of the minicaps’ polymer leaflets guided by mechanics simulations enables versatile recording from organoids of different sizes, and we validate the feasibility of electrophysiology recording from 400- to 600-μm-sized organoids for up to 4 weeks and in response to glutamate stimulation. Our studies suggest that 3D shell MEAs offer great potential for high signal-to-noise ratio and 3D spatiotemporal brain organoid recording.
format Online
Article
Text
id pubmed-9385157
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-93851572022-08-26 Shell microelectrode arrays (MEAs) for brain organoids Huang, Qi Tang, Bohao Romero, July Carolina Yang, Yuqian Elsayed, Saifeldeen Khalil Pahapale, Gayatri Lee, Tien-Jung Morales Pantoja, Itzy E. Han, Fang Berlinicke, Cynthia Xiang, Terry Solazzo, Mallory Hartung, Thomas Qin, Zhao Caffo, Brian S. Smirnova, Lena Gracias, David H. Sci Adv Physical and Materials Sciences Brain organoids are important models for mimicking some three-dimensional (3D) cytoarchitectural and functional aspects of the brain. Multielectrode arrays (MEAs) that enable recording and stimulation of activity from electrogenic cells offer notable potential for interrogating brain organoids. However, conventional MEAs, initially designed for monolayer cultures, offer limited recording contact area restricted to the bottom of the 3D organoids. Inspired by the shape of electroencephalography caps, we developed miniaturized wafer-integrated MEA caps for organoids. The optically transparent shells are composed of self-folding polymer leaflets with conductive polymer–coated metal electrodes. Tunable folding of the minicaps’ polymer leaflets guided by mechanics simulations enables versatile recording from organoids of different sizes, and we validate the feasibility of electrophysiology recording from 400- to 600-μm-sized organoids for up to 4 weeks and in response to glutamate stimulation. Our studies suggest that 3D shell MEAs offer great potential for high signal-to-noise ratio and 3D spatiotemporal brain organoid recording. American Association for the Advancement of Science 2022-08-17 /pmc/articles/PMC9385157/ /pubmed/35977026 http://dx.doi.org/10.1126/sciadv.abq5031 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Huang, Qi
Tang, Bohao
Romero, July Carolina
Yang, Yuqian
Elsayed, Saifeldeen Khalil
Pahapale, Gayatri
Lee, Tien-Jung
Morales Pantoja, Itzy E.
Han, Fang
Berlinicke, Cynthia
Xiang, Terry
Solazzo, Mallory
Hartung, Thomas
Qin, Zhao
Caffo, Brian S.
Smirnova, Lena
Gracias, David H.
Shell microelectrode arrays (MEAs) for brain organoids
title Shell microelectrode arrays (MEAs) for brain organoids
title_full Shell microelectrode arrays (MEAs) for brain organoids
title_fullStr Shell microelectrode arrays (MEAs) for brain organoids
title_full_unstemmed Shell microelectrode arrays (MEAs) for brain organoids
title_short Shell microelectrode arrays (MEAs) for brain organoids
title_sort shell microelectrode arrays (meas) for brain organoids
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385157/
https://www.ncbi.nlm.nih.gov/pubmed/35977026
http://dx.doi.org/10.1126/sciadv.abq5031
work_keys_str_mv AT huangqi shellmicroelectrodearraysmeasforbrainorganoids
AT tangbohao shellmicroelectrodearraysmeasforbrainorganoids
AT romerojulycarolina shellmicroelectrodearraysmeasforbrainorganoids
AT yangyuqian shellmicroelectrodearraysmeasforbrainorganoids
AT elsayedsaifeldeenkhalil shellmicroelectrodearraysmeasforbrainorganoids
AT pahapalegayatri shellmicroelectrodearraysmeasforbrainorganoids
AT leetienjung shellmicroelectrodearraysmeasforbrainorganoids
AT moralespantojaitzye shellmicroelectrodearraysmeasforbrainorganoids
AT hanfang shellmicroelectrodearraysmeasforbrainorganoids
AT berlinickecynthia shellmicroelectrodearraysmeasforbrainorganoids
AT xiangterry shellmicroelectrodearraysmeasforbrainorganoids
AT solazzomallory shellmicroelectrodearraysmeasforbrainorganoids
AT hartungthomas shellmicroelectrodearraysmeasforbrainorganoids
AT qinzhao shellmicroelectrodearraysmeasforbrainorganoids
AT caffobrians shellmicroelectrodearraysmeasforbrainorganoids
AT smirnovalena shellmicroelectrodearraysmeasforbrainorganoids
AT graciasdavidh shellmicroelectrodearraysmeasforbrainorganoids