Cargando…
Design of LDMOS Device Modeling Method Based on Neural Network
The rapid development of power semiconductor devices is helping to realize a low-carbon society and provide a better life for everyone. Power semiconductors not only are used in many large-scale industrial control fields such as power transmission and control in power grids, rail transit traction sy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385322/ https://www.ncbi.nlm.nih.gov/pubmed/35990151 http://dx.doi.org/10.1155/2022/4988636 |
Sumario: | The rapid development of power semiconductor devices is helping to realize a low-carbon society and provide a better life for everyone. Power semiconductors not only are used in many large-scale industrial control fields such as power transmission and control in power grids, rail transit traction systems, and defense weapons and equipment, but also play a vital role in daily equipment such as home appliances, medical electronics, and electronic communications; all devices such as power steering in cars, battery chargers, cell phones, and microwave ovens utilize power electronics. This research mainly focuses on the high-voltage LDMOS device model and its implementation. Based on the in-depth study of the structure and physical mechanism of high-voltage LDMOS devices, with the help of BSIM4 core model, which is now very mature and widely used in industry, the drift region of high-voltage LDMOS is mainly modeled, and the drift region of LDMOS is modeled as a variable resistance controlled by voltage. Finally, Verilog-A language and neural network method are used to establish a compact model of LDMOS. The improved model is applied to LDMOS and can better fit the output characteristics with self-heating effect. |
---|