Cargando…
Ensemble Learning-Based Multi-Cues Fusion Object Tracking in Complex Surveillance Environment
The vast majority of currently available kernelized correlation filter (KCF)-based trackers simply make use of a single object feature to define the object of interest. It is impossible to avoid tracking instability while working with a wide variety of complex videos. In this piece of research, an e...
Autores principales: | Du, Hui, Zhang, Yanning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385331/ https://www.ncbi.nlm.nih.gov/pubmed/35990133 http://dx.doi.org/10.1155/2022/9165744 |
Ejemplares similares
-
Retracted: Ensemble Learning-Based Multi-Cues Fusion Object Tracking in Complex Surveillance Environment
por: Intelligence and Neuroscience, Computational
Publicado: (2023) -
Multi-Object Tracking on SWIR Images for City Surveillance in an Edge-Computing Environment
por: Park, Jihun, et al.
Publicado: (2023) -
Multiple Target Tracking Based on Multiple Hypotheses Tracking and Modified Ensemble Kalman Filter in Multi-Sensor Fusion
por: Zhang, Zequn, et al.
Publicado: (2019) -
Ensemble perception during multiple-object tracking
por: Alzahabi, Reem, et al.
Publicado: (2021) -
Exploring the effectiveness of auditory, visual, and audio-visual sensory cues in a multiple object tracking environment
por: Föcker, Julia, et al.
Publicado: (2022)