Cargando…
CNN-Based Cross-Modal Residual Network for Image Synthesis
This study attempts to address the issue that present cross-modal image synthesis algorithms do not capture the spatial and structural information of human tissues effectively. As a consequence, the resulting photos include flaws including fuzzy edges and a poor signal-to-noise ratio. The authors of...
Autores principales: | Kumar, Rajeev, Bhatnagar, Vaibhav, Jain, Amit, Singh, Mahesh, Kareem, Z. H., Sugumar, R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385350/ https://www.ncbi.nlm.nih.gov/pubmed/35993059 http://dx.doi.org/10.1155/2022/6399730 |
Ejemplares similares
-
Single- and Cross-Modality Near Duplicate Image Pairs Detection via Spatial Transformer Comparing CNN
por: Zhang, Yi, et al.
Publicado: (2021) -
Breast Cancer Pathological Image Classification Based on the Multiscale CNN Squeeze Model
por: Alqahtani, Yahya, et al.
Publicado: (2022) -
Image Synthesis Pipeline for CNN-Based Sensing Systems
por: Frolov, Vladimir, et al.
Publicado: (2022) -
Multi-modal medical image classification using deep residual network and genetic algorithm
por: Abid, Muhammad Haris, et al.
Publicado: (2023) -
MCred: multi-modal message credibility for fake news detection using BERT and CNN
por: Verma, Pawan Kumar, et al.
Publicado: (2022)