Cargando…
A spatial copula interpolation in a random field with application in air pollution data
Interpolating a skewed conditional spatial random field with missing data is cumbersome in the absence of Gaussianity assumptions. Copulas can capture different types of joint tail characteristics beyond the Gaussian paradigm. Maintaining spatial homogeneity and continuity around the observed random...
Autores principales: | Thakur, Debjoy, Das, Ishapathik, Chakravarty, Shubhashree |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385445/ https://www.ncbi.nlm.nih.gov/pubmed/35996594 http://dx.doi.org/10.1007/s40808-022-01484-6 |
Ejemplares similares
-
Uni-variate and bi-variate Inverted Exponential Teissier distribution in Bayesian and non-Bayesian framework to model stochastic dynamic variation of climate data
por: Thakur, Debjoy, et al.
Publicado: (2022) -
Modeling the Characteristics of Unhealthy Air Pollution Events: A Copula Approach
por: Masseran, Nurulkamal
Publicado: (2021) -
Analysis of changes in air pollution quality and impact of COVID-19 on environmental health in Iran: application of interpolation models and spatial autocorrelation
por: Keshtkar, Mostafa, et al.
Publicado: (2022) -
Interpolation of spatial data : some theory for kriging /
por: Stein, Michael Leonard
Publicado: (1999) -
Directional dependence between major cities in China based on copula regression on air pollution measurements
por: Kim, Jong-Min, et al.
Publicado: (2019)