Cargando…
Inverse design with deep generative models: next step in materials discovery
Data-driven inverse design for inorganic functional materials is a rapidly emerging field, which aims to automatically design innovative materials with target properties and to enable property-to-structure material discovery.
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385454/ https://www.ncbi.nlm.nih.gov/pubmed/35992238 http://dx.doi.org/10.1093/nsr/nwac111 |
_version_ | 1784769597603315712 |
---|---|
author | Lu, Shuaihua Zhou, Qionghua Chen, Xinyu Song, Zhilong Wang, Jinlan |
author_facet | Lu, Shuaihua Zhou, Qionghua Chen, Xinyu Song, Zhilong Wang, Jinlan |
author_sort | Lu, Shuaihua |
collection | PubMed |
description | Data-driven inverse design for inorganic functional materials is a rapidly emerging field, which aims to automatically design innovative materials with target properties and to enable property-to-structure material discovery. |
format | Online Article Text |
id | pubmed-9385454 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-93854542022-08-18 Inverse design with deep generative models: next step in materials discovery Lu, Shuaihua Zhou, Qionghua Chen, Xinyu Song, Zhilong Wang, Jinlan Natl Sci Rev Perspective Data-driven inverse design for inorganic functional materials is a rapidly emerging field, which aims to automatically design innovative materials with target properties and to enable property-to-structure material discovery. Oxford University Press 2022-06-11 /pmc/articles/PMC9385454/ /pubmed/35992238 http://dx.doi.org/10.1093/nsr/nwac111 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Perspective Lu, Shuaihua Zhou, Qionghua Chen, Xinyu Song, Zhilong Wang, Jinlan Inverse design with deep generative models: next step in materials discovery |
title | Inverse design with deep generative models: next step in materials discovery |
title_full | Inverse design with deep generative models: next step in materials discovery |
title_fullStr | Inverse design with deep generative models: next step in materials discovery |
title_full_unstemmed | Inverse design with deep generative models: next step in materials discovery |
title_short | Inverse design with deep generative models: next step in materials discovery |
title_sort | inverse design with deep generative models: next step in materials discovery |
topic | Perspective |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385454/ https://www.ncbi.nlm.nih.gov/pubmed/35992238 http://dx.doi.org/10.1093/nsr/nwac111 |
work_keys_str_mv | AT lushuaihua inversedesignwithdeepgenerativemodelsnextstepinmaterialsdiscovery AT zhouqionghua inversedesignwithdeepgenerativemodelsnextstepinmaterialsdiscovery AT chenxinyu inversedesignwithdeepgenerativemodelsnextstepinmaterialsdiscovery AT songzhilong inversedesignwithdeepgenerativemodelsnextstepinmaterialsdiscovery AT wangjinlan inversedesignwithdeepgenerativemodelsnextstepinmaterialsdiscovery |