Cargando…
Inverse design with deep generative models: next step in materials discovery
Data-driven inverse design for inorganic functional materials is a rapidly emerging field, which aims to automatically design innovative materials with target properties and to enable property-to-structure material discovery.
Autores principales: | Lu, Shuaihua, Zhou, Qionghua, Chen, Xinyu, Song, Zhilong, Wang, Jinlan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385454/ https://www.ncbi.nlm.nih.gov/pubmed/35992238 http://dx.doi.org/10.1093/nsr/nwac111 |
Ejemplares similares
-
Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning
por: Lu, Shuaihua, et al.
Publicado: (2018) -
Toward next-generation fuel cell materials
por: Shah, M.A.K. Yousaf, et al.
Publicado: (2023) -
Identifying the Steps Required to Effectively Implement Next-Generation Sequencing in Oncology at a National Level in Europe
por: Horgan, Denis, et al.
Publicado: (2022) -
In silico design and automated learning to boost next-generation smart biomanufacturing
por: Carbonell, Pablo, et al.
Publicado: (2020) -
The Next Generation Becomes the Now Generation
por: Martinez, Diego A., et al.
Publicado: (2010)