Cargando…
Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations
Uncertainties in ocean-mixing parameterizations are primary sources for ocean and climate modeling biases. Due to lack of process understanding, traditional physics-driven parameterizations perform unsatisfactorily in the tropics. Recent advances in the deep-learning method and the new availability...
Autores principales: | Zhu, Yuchao, Zhang, Rong-Hua, Moum, James N, Wang, Fan, Li, Xiaofeng, Li, Delei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385460/ https://www.ncbi.nlm.nih.gov/pubmed/35992235 http://dx.doi.org/10.1093/nsr/nwac044 |
Ejemplares similares
-
Commentary on ‘Physics-informed deep learning parameterization of ocean vertical mixing improves climate simulations’ by Zhu et al.
por: Camps-Valls, Gustau
Publicado: (2022) -
On the atmospheric muon energy spectrum in the deep ocean and its parameterization
por: Okada, A
Publicado: (1994) -
Impact of deep ocean mixing on the climatic mean state in the Southern Ocean
por: Tatebe, Hiroaki, et al.
Publicado: (2018) -
Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models
por: Qiao, Fangli, et al.
Publicado: (2016) -
Topographic enhancement of vertical turbulent mixing in the Southern Ocean
por: Mashayek, A., et al.
Publicado: (2017)