Cargando…

The role of China's terrestrial carbon sequestration 2010–2060 in offsetting energy-related CO(2) emissions

Energy consumption dominates annual CO(2) emissions in China. It is essential to significantly reduce CO(2) emissions from energy consumption to reach national carbon neutrality by 2060, while the role of terrestrial carbon sequestration in offsetting energy-related CO(2) emissions cannot be underes...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yao, Sun, Wenjuan, Qin, Zhangcai, Zhang, Wen, Yu, Yongqiang, Li, Tingting, Zhang, Qing, Wang, Guocheng, Yu, Lingfei, Wang, Yijie, Ding, Fan, Zhang, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385465/
https://www.ncbi.nlm.nih.gov/pubmed/35992243
http://dx.doi.org/10.1093/nsr/nwac057
Descripción
Sumario:Energy consumption dominates annual CO(2) emissions in China. It is essential to significantly reduce CO(2) emissions from energy consumption to reach national carbon neutrality by 2060, while the role of terrestrial carbon sequestration in offsetting energy-related CO(2) emissions cannot be underestimated. Natural climate solutions (NCS), including improvements in terrestrial carbon sequestration, represent readily deployable options to offset anthropogenic greenhouse gas emissions. However, the extent to which China's terrestrial carbon sequestration in the future, especially when target-oriented managements (TOMs) are implemented, can help to mitigate energy-related CO(2) emissions is far from certain. By synthesizing available findings and using several parameter-sparse empirical models that have been calibrated and/or fitted against contemporary measurements, we assessed China's terrestrial carbon sequestration over 2010–2060 and its contribution to offsetting national energy-related CO(2) emissions. We show that terrestrial C sequestration in China will increase from 0.375 ± 0.056 (mean ± standard deviation) Pg C yr(−1) in the 2010s to 0.458 ± 0.100 Pg C yr(−1) under RCP2.6 and 0.493 ± 0.108 Pg C yr(−1) under the RCP4.5 scenario in the 2050s, when TOMs are implemented. The majority of carbon sequestration comes from forest, accounting for 67.8–71.4% of the total amount. China's terrestrial ecosystems can offset 12.2–15.0% and 13.4–17.8% of energy-related peak CO(2) emissions in 2030 and 2060, respectively. The implementation of TOMs contributes 11.9% of the overall terrestrial carbon sequestration in the 2020s and 23.7% in the 2050s. The most likely strategy to maximize future NCS effectiveness is a full implementation of all applicable cost-effective NCS pathways in China. Our findings highlight the role of terrestrial carbon sequestration in offsetting energy-related CO(2) emissions and put forward future needs in the context of carbon neutrality.