Cargando…
A compute-in-memory chip based on resistive random-access memory
Realizing increasingly complex artificial intelligence (AI) functionalities directly on edge devices calls for unprecedented energy efficiency of edge hardware. Compute-in-memory (CIM) based on resistive random-access memory (RRAM)(1) promises to meet such demand by storing AI model weights in dense...
Autores principales: | Wan, Weier, Kubendran, Rajkumar, Schaefer, Clemens, Eryilmaz, Sukru Burc, Zhang, Wenqiang, Wu, Dabin, Deiss, Stephen, Raina, Priyanka, Qian, He, Gao, Bin, Joshi, Siddharth, Wu, Huaqiang, Wong, H.-S. Philip, Cauwenberghs, Gert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385482/ https://www.ncbi.nlm.nih.gov/pubmed/35978128 http://dx.doi.org/10.1038/s41586-022-04992-8 |
Ejemplares similares
-
Memory-Efficient Synaptic Connectivity for Spike-Timing- Dependent Plasticity
por: Pedroni, Bruno U., et al.
Publicado: (2019) -
Analog Coding in Emerging Memory Systems
por: Zarcone, Ryan V., et al.
Publicado: (2020) -
Author Correction: Analog Coding in Emerging Memory Systems
por: Zarcone, Ryan V., et al.
Publicado: (2020) -
Face classification using electronic synapses
por: Yao, Peng, et al.
Publicado: (2017) -
Performance analysis of DNA crossbar arrays for high-density memory storage applications
por: De, Arpan, et al.
Publicado: (2023)