Cargando…
Tissue-specific identification of multi-omics features for pan-cancer drug response prediction
Current statistical models for drug response prediction and biomarker identification fall short in leveraging the shared and unique information from various cancer tissues and multi-omics profiles. We developed mix-lasso model that introduces an additional sample group penalty term to capture tissue...
Autores principales: | Zhao, Zhi, Wang, Shixiong, Zucknick, Manuela, Aittokallio, Tero |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385562/ https://www.ncbi.nlm.nih.gov/pubmed/35992090 http://dx.doi.org/10.1016/j.isci.2022.104767 |
Ejemplares similares
-
Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach
por: Ali, Mehreen, et al.
Publicado: (2018) -
EnrichIntersect: an R package for custom set enrichment analysis and interactive visualization of intersecting sets
por: Zhao, Zhi, et al.
Publicado: (2022) -
Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression
por: Ammad-ud-din, Muhammad, et al.
Publicado: (2017) -
Machine learning and feature selection for drug response prediction in precision oncology applications
por: Ali, Mehreen, et al.
Publicado: (2018) -
Target-specific compound selectivity for multi-target drug discovery and repurposing
por: Wang, Tianduanyi, et al.
Publicado: (2022)