Cargando…

High-temperature ethanol fermentation from pineapple waste hydrolysate and gene expression analysis of thermotolerant yeast Saccharomyces cerevisiae

High-temperature ethanol fermentation by thermotolerant yeast is considered a promising technology for ethanol production, especially in tropical and subtropical regions. In this study, optimization conditions for high-temperature ethanol fermentation of pineapple waste hydrolysate (PWH) using a new...

Descripción completa

Detalles Bibliográficos
Autores principales: Phong, Huynh Xuan, Klanrit, Preekamol, Dung, Ngo Thi Phuong, Thanonkeo, Sudarat, Yamada, Mamoru, Thanonkeo, Pornthap
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385605/
https://www.ncbi.nlm.nih.gov/pubmed/35978081
http://dx.doi.org/10.1038/s41598-022-18212-w
Descripción
Sumario:High-temperature ethanol fermentation by thermotolerant yeast is considered a promising technology for ethanol production, especially in tropical and subtropical regions. In this study, optimization conditions for high-temperature ethanol fermentation of pineapple waste hydrolysate (PWH) using a newly isolated thermotolerant yeast, Saccharomyces cerevisiae HG1.1, and the expression of genes during ethanol fermentation at 40 °C were carried out. Three independent variables, including cell concentration, pH, and yeast extract, positively affected ethanol production from PWH at 40 °C. The optimum levels of these significant factors evaluated using response surface methodology (RSM) based on central composite design (CCD) were a cell concentration of 8.0 × 10(7) cells/mL, a pH of 5.5, and a yeast extract concentration of 4.95 g/L, yielding a maximum ethanol concentration of 36.85 g/L and productivity of 3.07 g/L. Gene expression analysis during high-temperature ethanol fermentation using RT–qPCR revealed that the acquisition of thermotolerance ability and ethanol fermentation efficiency of S. cerevisiae HG1.1 are associated with genes responsible for growth and ethanol stress, oxidative stress, acetic acid stress, DNA repair, the pyruvate-to-tricarboxylic acid (TCA) pathway, and the pyruvate-to-ethanol pathway.