Cargando…
Convolution neural network with batch normalization and inception-residual modules for Android malware classification
Deep learning technology is changing the landscape of cybersecurity research, especially the study of large amounts of data. With the rapid growth in the number of malware, developing of an efficient and reliable method for classifying malware has become one of the research priorities. In this paper...
Autores principales: | Liu, TianYue, Zhang, HongQi, Long, HaiXia, Shi, Jinmei, Yao, YuHua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385674/ https://www.ncbi.nlm.nih.gov/pubmed/35978023 http://dx.doi.org/10.1038/s41598-022-18402-6 |
Ejemplares similares
-
An Analysis of Android Malware Classification Services
por: Rashed, Mohammed, et al.
Publicado: (2021) -
Android malware and analysis
por: Dunham, Ken
Publicado: (2014) -
Deep Feature Extraction and Classification of Android Malware Images
por: Singh, Jaiteg, et al.
Publicado: (2020) -
Malware detection in Android phones
por: Malik, Sapna
Publicado: (2017) -
Android malware analysis in a nutshell
por: Almomani, Iman, et al.
Publicado: (2022)