Cargando…
Using machine learning to predict individual patient toxicities from cancer treatments
PURPOSE: Machine learning (ML) is a powerful tool for interrogating datasets and learning relationships between multiple variables. We utilized a ML model to identify those early breast cancer (EBC) patients at highest risk of developing severe vasomotor symptoms (VMS). METHODS: A gradient boosted d...
Autores principales: | Cole, Katherine Marie, Clemons, Mark, McGee, Sharon, Alzahrani, Mashari, Larocque, Gail, MacDonald, Fiona, Liu, Michelle, Pond, Gregory R., Mosquera, Lucy, Vandermeer, Lisa, Hutton, Brian, Piper, Ardelle, Fernandes, Ricardo, Emam, Khaled El |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385785/ https://www.ncbi.nlm.nih.gov/pubmed/35614153 http://dx.doi.org/10.1007/s00520-022-07156-6 |
Ejemplares similares
-
Vasomotor symptoms in early breast cancer—a “real world” exploration of the patient experience
por: Cole, Katherine Marie, et al.
Publicado: (2022) -
Developing patient-centred strategies to optimize the management of vasomotor symptoms in breast cancer patients: a survey of health care providers
por: Cole, Katherine Marie, et al.
Publicado: (2021) -
Adjuvant bisphosphonate use in patients with early stage breast cancer: a physician survey
por: McGee, Sharon, et al.
Publicado: (2021) -
Adjuvant bisphosphonate use in patients with early stage breast cancer: Patient perspectives on treatment acceptability and potential de-escalation
por: McGee, Sharon, et al.
Publicado: (2021) -
Delivery of cancer care via an outpatient telephone support line: a cross-sectional study of oncology nursing perspectives on quality and challenges
por: Shah, Hely, et al.
Publicado: (2022)