Cargando…
Breast cancer patient characterisation and visualisation using deep learning and fisher information networks
Breast cancer is the most commonly diagnosed female malignancy globally, with better survival rates if diagnosed early. Mammography is the gold standard in screening programmes for breast cancer, but despite technological advances, high error rates are still reported. Machine learning techniques, an...
Autores principales: | Ortega-Martorell, Sandra, Riley, Patrick, Olier, Ivan, Raidou, Renata G., Casana-Eslava, Raul, Rea, Marc, Shen, Li, Lisboa, Paulo J. G., Palmieri, Carlo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385866/ https://www.ncbi.nlm.nih.gov/pubmed/35978031 http://dx.doi.org/10.1038/s41598-022-17894-6 |
Ejemplares similares
-
Explaining the Neural Network: A Case Study to Model the Incidence of Cervical Cancer
por: Lisboa, Paulo J. G., et al.
Publicado: (2020) -
Robust Conditional Independence maps of single-voxel Magnetic Resonance Spectra to elucidate associations between brain tumours and metabolites
por: Casaña-Eslava, Raúl Vicente, et al.
Publicado: (2020) -
Enhanced survival prediction using explainable artificial intelligence in heart transplantation
por: Lisboa, Paulo J. G., et al.
Publicado: (2022) -
From raw data to data-analysis for magnetic resonance spectroscopy – the missing link: jMRUI2XML
por: Mocioiu, Victor, et al.
Publicado: (2015) -
Embedding MRI information into MRSI data source extraction improves brain tumour delineation in animal models
por: Ortega-Martorell, Sandra, et al.
Publicado: (2019)