Cargando…
A deep learning-based whole-body solution for PET/MRI attenuation correction
BACKGROUND: Deep convolutional neural networks have demonstrated robust and reliable PET attenuation correction (AC) as an alternative to conventional AC methods in integrated PET/MRI systems. However, its whole-body implementation is still challenging due to anatomical variations and the limited MR...
Autores principales: | Ahangari, Sahar, Beck Olin, Anders, Kinggård Federspiel, Marianne, Jakoby, Bjoern, Andersen, Thomas Lund, Hansen, Adam Espe, Fischer, Barbara Malene, Littrup Andersen, Flemming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385907/ https://www.ncbi.nlm.nih.gov/pubmed/35978211 http://dx.doi.org/10.1186/s40658-022-00486-8 |
Ejemplares similares
-
Multi-parametric PET/MRI for enhanced tumor characterization of patients with cervical cancer
por: Ahangari, Sahar, et al.
Publicado: (2022) -
PET/MR attenuation correction in brain imaging using a continuous bone signal derived from UTE
por: Ladefoged, Claes, et al.
Publicado: (2015) -
Impact of Reduced Image Noise on Deauville Scores in Patients with Lymphoma Scanned on a Long-Axial Field-of-View PET/CT-Scanner
por: Korsholm, Kirsten, et al.
Publicado: (2023) -
Deep learning for Dixon MRI-based attenuation correction in PET/MRI of head and neck cancer patients
por: Olin, Anders B., et al.
Publicado: (2022) -
PET/MR imaging of sarcomas: effect of PET quantification by classification of tissue
por: Ladefoged, Claes Nøhr, et al.
Publicado: (2014)