Cargando…
Machine learning early prediction of respiratory syncytial virus in pediatric hospitalized patients
Respiratory syncytial virus (RSV) causes millions of infections among children in the US each year and can cause severe disease or death. Infections that are not promptly detected can cause outbreaks that put other hospitalized patients at risk. No tools besides diagnostic testing are available to r...
Autores principales: | Tso, Chak Foon, Lam, Carson, Calvert, Jacob, Mao, Qingqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9385995/ https://www.ncbi.nlm.nih.gov/pubmed/35989982 http://dx.doi.org/10.3389/fped.2022.886212 |
Ejemplares similares
-
Semisupervised Deep Learning Techniques for Predicting Acute Respiratory Distress Syndrome From Time-Series Clinical Data: Model Development and Validation Study
por: Lam, Carson, et al.
Publicado: (2021) -
Multitask Learning With Recurrent Neural Networks for Acute Respiratory Distress Syndrome Prediction Using Only Electronic Health Record Data: Model Development and Validation Study
por: Lam, Carson, et al.
Publicado: (2022) -
Pediatric Severe Sepsis Prediction Using Machine Learning
por: Le, Sidney, et al.
Publicado: (2019) -
Respiratory Syncytial Virus Bronchiolitis in Infancy: The Acute Hospitalization Cost
por: Bozzola, Elena, et al.
Publicado: (2021) -
Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction
por: Rahmani, Keyvan, et al.
Publicado: (2022)