Cargando…
LBS user location privacy protection scheme based on trajectory similarity
During the data set input or output, or the data set itself adds noise to enable data distortion to effectively reduce the risk of user privacy leakage. However, in the conventional method, the added noise may cause data distortion, thereby appealed against it. However, the amount of noise is too sm...
Autores principales: | Qian, Kun, Li, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386014/ https://www.ncbi.nlm.nih.gov/pubmed/35978018 http://dx.doi.org/10.1038/s41598-022-18268-8 |
Ejemplares similares
-
Cache-Based Privacy Protection Scheme for Continuous Location Query
por: Liu, Zhenpeng, et al.
Publicado: (2023) -
Nonexposure Accurate Location K-Anonymity Algorithm in LBS
por: Jia, Jinying, et al.
Publicado: (2014) -
An Efficient Differential Privacy-Based Method for Location Privacy Protection in Location-Based Services
por: Wang, Bo, et al.
Publicado: (2023) -
Successive Trajectory Privacy Protection with Semantics Prediction Differential Privacy
por: Zhang, Jing, et al.
Publicado: (2022) -
A fine granularity based user collaboration algorithm for location privacy protection
por: Wang, Bin, et al.
Publicado: (2019)