Cargando…
Variational learning of quantum ground states on spiking neuromorphic hardware
Recent research has demonstrated the usefulness of neural networks as variational ansatz functions for quantum many-body states. However, high-dimensional sampling spaces and transient autocorrelations confront these approaches with a challenging computational bottleneck. Compared to conventional ne...
Autores principales: | Klassert, Robert, Baumbach, Andreas, Petrovici, Mihai A., Gärttner, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386107/ https://www.ncbi.nlm.nih.gov/pubmed/35992070 http://dx.doi.org/10.1016/j.isci.2022.104707 |
Ejemplares similares
-
Neuromorphic Hardware Learns to Learn
por: Bohnstingl, Thomas, et al.
Publicado: (2019) -
Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware
por: Stöckel, Andreas, et al.
Publicado: (2017) -
Neuromorphic Spiking Neural Networks and Their Memristor-CMOS Hardware Implementations
por: Camuñas-Mesa, Luis A., et al.
Publicado: (2019) -
Classification of multivariate data with a spiking neural network on neuromorphic hardware
por: Schmuker, Michael, et al.
Publicado: (2013) -
Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI
por: Xiao, Chao, et al.
Publicado: (2022)