Cargando…
An integration engineering framework for machine learning in healthcare
BACKGROUND AND OBJECTIVES: Machine Learning offers opportunities to improve patient outcomes, team performance, and reduce healthcare costs. Yet only a small fraction of all Machine Learning models for health care have been successfully integrated into the clinical space. There are no current guidel...
Autores principales: | Assadi, Azadeh, Laussen, Peter C., Goodwin, Andrew J., Goodfellow, Sebastian, Dixon, William, Greer, Robert W., Jegatheeswaran, Anusha, Singh, Devin, McCradden, Melissa, Gallant, Sara N., Goldenberg, Anna, Eytan, Danny, Mazwi, Mjaye L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386122/ https://www.ncbi.nlm.nih.gov/pubmed/35990013 http://dx.doi.org/10.3389/fdgth.2022.932411 |
Ejemplares similares
-
Timing errors and temporal uncertainty in clinical databases—A narrative review
por: Goodwin, Andrew J., et al.
Publicado: (2022) -
iCVS—Inferring Cardio-Vascular hidden States from physiological signals available at the bedside
por: Ravid Tannenbaum, Neta, et al.
Publicado: (2023) -
The silent trial - the bridge between bench-to-bedside clinical AI applications
por: Kwong, Jethro C. C., et al.
Publicado: (2022) -
Making machine learning matter to clinicians: model actionability in medical decision-making
por: Ehrmann, Daniel E., et al.
Publicado: (2023) -
Decision-centered design of a clinical decision support system for acute management of pediatric congenital heart disease
por: Assadi, Azadeh, et al.
Publicado: (2022)