Cargando…
A discussion on the robust vector autoregressive models: novel evidence from safe haven assets
The vector autoregressive (VAR) model has been popularly employed in operational practice to study multivariate time series. Despite its usefulness in providing associated metrics such as the impulse response function (IRF) and forecast error variance decomposition (FEVD), the traditional VAR model...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386210/ https://www.ncbi.nlm.nih.gov/pubmed/35996744 http://dx.doi.org/10.1007/s10479-022-04919-6 |
_version_ | 1784769753154322432 |
---|---|
author | Chang, Le Shi, Yanlin |
author_facet | Chang, Le Shi, Yanlin |
author_sort | Chang, Le |
collection | PubMed |
description | The vector autoregressive (VAR) model has been popularly employed in operational practice to study multivariate time series. Despite its usefulness in providing associated metrics such as the impulse response function (IRF) and forecast error variance decomposition (FEVD), the traditional VAR model estimated via the usual ordinary least squares is vulnerable to outliers. To handle potential outliers in multivariate time series, this paper investigates two robust estimation methods of the VAR model, the reweighted multivariate least trimmed squares and the multivariate MM-estimation. The robust information criteria are also proposed to select the appropriate number of temporal lags. Via extensive simulation studies, we show that the robust VAR models lead to much more accurate estimates than the original VAR in the presence of outliers. Our empirical results include logged daily realized volatilities of six common safe haven assets: futures of gold, silver, Brent oil and West Texas Intermediate (WTI) oil and currencies of Swiss Francs and Japanese Yen. Our sample covers July 2017–June 2020, which includes the history-writing price drop of WTI on April 20, 2020. Our baseline results suggest that the traditional VAR model may significantly overestimate some parameters, as well as IRF and FEVD metrics. In contrast, robust VAR models provide more reliable results, the validity of which is verified via various approaches. Empirical implications based on robust estimates are further illustrated. |
format | Online Article Text |
id | pubmed-9386210 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-93862102022-08-18 A discussion on the robust vector autoregressive models: novel evidence from safe haven assets Chang, Le Shi, Yanlin Ann Oper Res Original Research The vector autoregressive (VAR) model has been popularly employed in operational practice to study multivariate time series. Despite its usefulness in providing associated metrics such as the impulse response function (IRF) and forecast error variance decomposition (FEVD), the traditional VAR model estimated via the usual ordinary least squares is vulnerable to outliers. To handle potential outliers in multivariate time series, this paper investigates two robust estimation methods of the VAR model, the reweighted multivariate least trimmed squares and the multivariate MM-estimation. The robust information criteria are also proposed to select the appropriate number of temporal lags. Via extensive simulation studies, we show that the robust VAR models lead to much more accurate estimates than the original VAR in the presence of outliers. Our empirical results include logged daily realized volatilities of six common safe haven assets: futures of gold, silver, Brent oil and West Texas Intermediate (WTI) oil and currencies of Swiss Francs and Japanese Yen. Our sample covers July 2017–June 2020, which includes the history-writing price drop of WTI on April 20, 2020. Our baseline results suggest that the traditional VAR model may significantly overestimate some parameters, as well as IRF and FEVD metrics. In contrast, robust VAR models provide more reliable results, the validity of which is verified via various approaches. Empirical implications based on robust estimates are further illustrated. Springer US 2022-08-18 /pmc/articles/PMC9386210/ /pubmed/35996744 http://dx.doi.org/10.1007/s10479-022-04919-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Research Chang, Le Shi, Yanlin A discussion on the robust vector autoregressive models: novel evidence from safe haven assets |
title | A discussion on the robust vector autoregressive models: novel evidence from safe haven assets |
title_full | A discussion on the robust vector autoregressive models: novel evidence from safe haven assets |
title_fullStr | A discussion on the robust vector autoregressive models: novel evidence from safe haven assets |
title_full_unstemmed | A discussion on the robust vector autoregressive models: novel evidence from safe haven assets |
title_short | A discussion on the robust vector autoregressive models: novel evidence from safe haven assets |
title_sort | discussion on the robust vector autoregressive models: novel evidence from safe haven assets |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386210/ https://www.ncbi.nlm.nih.gov/pubmed/35996744 http://dx.doi.org/10.1007/s10479-022-04919-6 |
work_keys_str_mv | AT changle adiscussionontherobustvectorautoregressivemodelsnovelevidencefromsafehavenassets AT shiyanlin adiscussionontherobustvectorautoregressivemodelsnovelevidencefromsafehavenassets AT changle discussionontherobustvectorautoregressivemodelsnovelevidencefromsafehavenassets AT shiyanlin discussionontherobustvectorautoregressivemodelsnovelevidencefromsafehavenassets |