Cargando…

Machine learning model for depression based on heavy metals among aging people: A study with National Health and Nutrition Examination Survey 2017–2018

OBJECTIVE: To explore the association between depression and blood metal elements, we conducted this machine learning model fitting research. METHODS: Datasets from the National Health and Nutrition Examination Survey (NHANES) in 2017–2018 were downloaded (https://www.cdc.gov/nchs/nhanes). After scr...

Descripción completa

Detalles Bibliográficos
Autores principales: Xia, Fang, Li, Qingwen, Luo, Xin, Wu, Jinyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386350/
https://www.ncbi.nlm.nih.gov/pubmed/35991018
http://dx.doi.org/10.3389/fpubh.2022.939758
Descripción
Sumario:OBJECTIVE: To explore the association between depression and blood metal elements, we conducted this machine learning model fitting research. METHODS: Datasets from the National Health and Nutrition Examination Survey (NHANES) in 2017–2018 were downloaded (https://www.cdc.gov/nchs/nhanes). After screening, 3,247 aging samples with 10 different metals [lead (Pb), mercury (Hg), cadmium (Cd), manganese (Mn), selenium (Se), chromium (Cr), cobalt (Co), inorganic mercury (InHg), methylmercury (MeHg) and ethyl mercury (EtHg)] were included. Eight machine learning algorithms were compared for analyzing metal and depression. After comparison, XGBoost showed optimal effects. Poisson regression and XGBoost model (a kind of decision tree algorithm) were conducted to find the risk factors and prediction for depression. RESULTS: A total of 344 individuals out of 3247 participants were diagnosed with depression. In the Poisson model, we found Cd (β = 0.22, P = 0.00000941), EtHg (β = 3.43, P = 0.003216), and Hg (β=-0.15, P = 0.001524) were related with depression. XGBoost model was the suitable algorithm for the evaluation of depression, the accuracy was 0.89 with 95%CI (0.87, 0.92) and Kappa value was 0.006. Area under the curve (AUC) was 0.88. After that, an online XGBoost application for depression prediction was developed. CONCLUSION: Blood heavy metals, especially Cd, EtHg, and Hg were significantly associated with depression and the prediction of depression was imperative.