Cargando…
Cabbage and Weed Identification Based on Machine Learning and Target Spraying System Design
The complexity of natural elements seriously affects the accuracy and stability of field target identification, and the speed of an identification algorithm essentially limits the practical application of field pesticide spraying. In this study, a cabbage identification and pesticide spraying contro...
Autores principales: | Zhao, Xueguan, Wang, Xiu, Li, Cuiling, Fu, Hao, Yang, Shuo, Zhai, Changyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386377/ https://www.ncbi.nlm.nih.gov/pubmed/35991409 http://dx.doi.org/10.3389/fpls.2022.924973 |
Ejemplares similares
-
Identification of Weeds Based on Hyperspectral Imaging and Machine Learning
por: Li, Yanjie, et al.
Publicado: (2021) -
Sprayer boom height measurement in wheat field using ultrasonic sensor: An exploratory study
por: Zhao, Xueguan, et al.
Publicado: (2022) -
Weed25: A deep learning dataset for weed identification
por: Wang, Pei, et al.
Publicado: (2022) -
Wind loss model for the thick canopies of orchard trees based on accurate variable spraying
por: Gu, Chenchen, et al.
Publicado: (2022) -
Towards practical object detection for weed spraying in precision agriculture
por: Darbyshire, Madeleine, et al.
Publicado: (2023)