Cargando…
SlypNet: Spikelet-based yield prediction of wheat using advanced plant phenotyping and computer vision techniques
The application of computer vision in agriculture has already contributed immensely to restructuring the existing field practices starting from the sowing to the harvesting. Among the different plant parts, the economic part, the yield, has the highest importance and becomes the ultimate goal for th...
Autores principales: | Maji, Arpan K., Marwaha, Sudeep, Kumar, Sudhir, Arora, Alka, Chinnusamy, Viswanathan, Islam, Shahnawazul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386505/ https://www.ncbi.nlm.nih.gov/pubmed/35991448 http://dx.doi.org/10.3389/fpls.2022.889853 |
Ejemplares similares
-
SpikeSegNet-a deep learning approach utilizing encoder-decoder network with hourglass for spike segmentation and counting in wheat plant from visual imaging
por: Misra, Tanuj, et al.
Publicado: (2020) -
Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat
por: Alqudah, Ahmad M., et al.
Publicado: (2020) -
TrIncNet: a lightweight vision transformer network for identification of plant diseases
por: Gole, Pushkar, et al.
Publicado: (2023) -
‘Spikelet stop’ determines the maximum yield potential stage in barley
por: Thirulogachandar, Venkatasubbu, et al.
Publicado: (2021) -
Deep learning-based approach for identification of diseases of maize crop
por: Haque, Md. Ashraful, et al.
Publicado: (2022)