Cargando…
ProteinBERT: a universal deep-learning model of protein sequence and function
SUMMARY: Self-supervised deep language modeling has shown unprecedented success across natural language tasks, and has recently been repurposed to biological sequences. However, existing models and pretraining methods are designed and optimized for text analysis. We introduce ProteinBERT, a deep lan...
Autores principales: | Brandes, Nadav, Ofer, Dan, Peleg, Yam, Rappoport, Nadav, Linial, Michal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386727/ https://www.ncbi.nlm.nih.gov/pubmed/35020807 http://dx.doi.org/10.1093/bioinformatics/btac020 |
Ejemplares similares
-
The language of proteins: NLP, machine learning & protein sequences
por: Ofer, Dan, et al.
Publicado: (2021) -
ASAP: a machine learning framework for local protein properties
por: Brandes, Nadav, et al.
Publicado: (2016) -
Overlooked Short Toxin-Like Proteins: A Shortcut to Drug Design
por: Linial, Michal, et al.
Publicado: (2017) -
Viral Proteins Acquired from a Host Converge to Simplified Domain Architectures
por: Rappoport, Nadav, et al.
Publicado: (2012) -
Quantifying gene selection in cancer through protein functional alteration bias
por: Brandes, Nadav, et al.
Publicado: (2019)