Cargando…
Predicting incidence of hepatitis E using machine learning in Jiangsu Province, China
Hepatitis E is an increasingly serious worldwide public health problem that has attracted extensive attention. It is necessary to accurately predict the incidence of hepatitis E to better plan ahead for future medical care. In this study, we developed a Bi-LSTM model that incorporated meteorological...
Autores principales: | Cheng, Xiaoqing, Liu, Wendong, Zhang, Xuefeng, Wang, Minghao, Bao, Changjun, Wu, Tianxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386790/ https://www.ncbi.nlm.nih.gov/pubmed/35899849 http://dx.doi.org/10.1017/S0950268822001303 |
Ejemplares similares
-
Predicting incidence of hepatitis E for thirteen cities in Jiangsu Province, China
por: Wu, Tianxing, et al.
Publicado: (2022) -
Analysis of the spatial-temporal distribution characteristics of hepatitis E in Jiangsu province from 2005 to 2020
por: Shi, Yao, et al.
Publicado: (2023) -
Forecasting incidence of infectious diarrhea using random forest in Jiangsu Province, China
por: Fang, Xinyu, et al.
Publicado: (2020) -
Epidemiology of infectious diarrhoea and the relationship with etiological and meteorological factors in Jiangsu Province, China
por: Fang, Xinyu, et al.
Publicado: (2019) -
Forecasting incidence of hand, foot and mouth disease using BP neural networks in Jiangsu province, China
por: Liu, Wendong, et al.
Publicado: (2019)