Cargando…
Empowerment of Water-Evaporation-Induced Electric Generators via the Use of Metal Electrodes
[Image: see text] As water rises in the pores of a partially immersed porous film due to capillary action, it carries along ions that are dissociated from the pore walls, generating a streaming current and potential. The water and current flows are sustained due to water evaporation from the unsubme...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386828/ https://www.ncbi.nlm.nih.gov/pubmed/35990429 http://dx.doi.org/10.1021/acsomega.2c02501 |
Sumario: | [Image: see text] As water rises in the pores of a partially immersed porous film due to capillary action, it carries along ions that are dissociated from the pore walls, generating a streaming current and potential. The water and current flows are sustained due to water evaporation from the unsubmerged surfaces. Traditionally, inert graphite (C) electrodes are used to construct water-evaporation-induced generators (WEIGs) that harness this electricity. WEIGs are environmentally friendly but have weak power outputs. Herein, we report on C/metal WEIGs that feature C top electrodes and metal bottom electrodes, as well as metal/metal WEIGs. Operating in a NaCl solution that facilitates the Galvanic corrosion of the metal (Cu, steel, and Al) electrodes, these Galvanic WEIGs outperform a C/C WEIG by thousands of times in power output. Equally interestingly, the asymmetric environments and potential differences between the two electrodes of a WEIG facilitate metal corrosion and fabrication of compact Galvanic WEIGs. This study clearly shows that one should choose electrodes with caution for the construction of true WEIGs. |
---|