Cargando…
Artificial intelligence–aided diagnosis model for acute respiratory distress syndrome combining clinical data and chest radiographs
OBJECTIVE: The aim of this study was to develop an artificial intelligence–based model to detect the presence of acute respiratory distress syndrome (ARDS) using clinical data and chest X-ray (CXR) data. METHOD: The transfer learning method was used to train a convolutional neural network (CNN) mode...
Autores principales: | Pai, Kai-Chih, Chao, Wen-Cheng, Huang, Yu-Len, Sheu, Ruey-Kai, Chen, Lun-Chi, Wang, Min-Shian, Lin, Shau-Hung, Yu, Yu-Yi, Wu, Chieh-Liang, Chan, Ming-Cheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386858/ https://www.ncbi.nlm.nih.gov/pubmed/35990108 http://dx.doi.org/10.1177/20552076221120317 |
Ejemplares similares
-
An Artificial Intelligence Approach to Bloodstream Infections Prediction
por: Pai, Kai-Chih, et al.
Publicado: (2021) -
Association of Artificial Intelligence–Aided Chest Radiograph Interpretation With Reader Performance and Efficiency
por: Ahn, Jong Seok, et al.
Publicado: (2022) -
Artificial Intelligence-Based Detection of Pneumonia in Chest Radiographs
por: Becker, Judith, et al.
Publicado: (2022) -
Human–machine partnership with artificial intelligence for chest radiograph diagnosis
por: Patel, Bhavik N., et al.
Publicado: (2019) -
COVID-19 Diagnosis on Chest Radiograph Using Artificial Intelligence
por: Baruah, Dhiraj, et al.
Publicado: (2022)