Cargando…
Exploratory Graph Analysis for Factor Retention: Simulation Results for Continuous and Binary Data
Exploratory graph analysis (EGA) is a commonly applied technique intended to help social scientists discover latent variables. Yet, the results can be influenced by the methodological decisions the researcher makes along the way. In this article, we focus on the choice regarding the number of factor...
Autores principales: | Cosemans, Tim, Rosseel, Yves, Gelper, Sarah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9386885/ https://www.ncbi.nlm.nih.gov/pubmed/35989724 http://dx.doi.org/10.1177/00131644211059089 |
Ejemplares similares
-
Factor Retention in Exploratory Factor Analysis With Missing Data
por: Goretzko, David
Publicado: (2021) -
Graph ranking for exploratory gene data analysis
por: Gao, Cuilan, et al.
Publicado: (2009) -
A Review of fMRI Simulation Studies
por: Welvaert, Marijke, et al.
Publicado: (2014) -
Continuous facility location on graphs
por: Hartmann, Tim A., et al.
Publicado: (2021) -
Framework for inferring empirical causal graphs from binary data to support multidimensional poverty analysis
por: Amornbunchornvej, Chainarong, et al.
Publicado: (2023)