Cargando…
Streaming Potential with Ideally Polarizable Electron-Conducting Substrates
[Image: see text] With nonconducting substrates, streaming potential in sufficiently broad (vs Debye screening length) capillaries is well known to be a linear function of applied pressure (and coordinate along the capillary). This study for the first time explores streaming potential with ideally p...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387104/ https://www.ncbi.nlm.nih.gov/pubmed/35926165 http://dx.doi.org/10.1021/acs.langmuir.2c01305 |
Sumario: | [Image: see text] With nonconducting substrates, streaming potential in sufficiently broad (vs Debye screening length) capillaries is well known to be a linear function of applied pressure (and coordinate along the capillary). This study for the first time explores streaming potential with ideally polarizable electron-conducting substrates and shows it to be a nonlinear function of both coordinate and applied pressure. Experimental manifestations can be primarily expected for streaming potentials arising along thin porous electron-conducting films experiencing solvent evaporation from the film side surface. Model predictions are in good qualitative agreement with literature experimental data. |
---|