Cargando…
Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System
The rapid development of mobile device applications put tremendous pressure on edge nodes with limited computing capabilities, which may cause poor user experience. To solve this problem, collaborative cloud-edge computing is proposed. In the cloud-edge computing, an edge node with limited local res...
Autores principales: | Xu, Jianqiao, Xu, Zhuohan, Shi, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387682/ https://www.ncbi.nlm.nih.gov/pubmed/35992348 http://dx.doi.org/10.3389/fbioe.2022.908056 |
Ejemplares similares
-
5G Converged Network Resource Allocation Strategy Based on Reinforcement Learning in Edge Cloud Computing Environment
por: Li, Xuezhu
Publicado: (2022) -
Pursuit and Evasion Strategy of a Differential Game Based on Deep Reinforcement Learning
por: Xu, Can, et al.
Publicado: (2022) -
Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
por: Yu, Zijia, et al.
Publicado: (2022) -
Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-Vehicle Assisted Edge Computing
por: Li, Shuyang, et al.
Publicado: (2021) -
Deep Reinforcement Learning-Empowered Resource Allocation for Mobile Edge Computing in Cellular V2X Networks
por: Li, Dongji, et al.
Publicado: (2021)