Cargando…

An in vitro methodology for experimental simulation on the natural hip joint

Different hip pathologies can cause geometric variation of the acetabulum and femoral head. These variations have been considered as an underlying mechanism that affects the tribology of the natural hip joint and changes the stress distribution on the articular surface, potentially leading to joint...

Descripción completa

Detalles Bibliográficos
Autores principales: Jimenez-Cruz, David, Dubey, Mudit, Board, Tim, Williams, Sophie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387788/
https://www.ncbi.nlm.nih.gov/pubmed/35980907
http://dx.doi.org/10.1371/journal.pone.0272264
_version_ 1784770078487609344
author Jimenez-Cruz, David
Dubey, Mudit
Board, Tim
Williams, Sophie
author_facet Jimenez-Cruz, David
Dubey, Mudit
Board, Tim
Williams, Sophie
author_sort Jimenez-Cruz, David
collection PubMed
description Different hip pathologies can cause geometric variation of the acetabulum and femoral head. These variations have been considered as an underlying mechanism that affects the tribology of the natural hip joint and changes the stress distribution on the articular surface, potentially leading to joint degradation. To improve understanding of the damage mechanisms and abnormal mechanics of the hip joint, a reliable in-vitro methodology that represents the in vivo mechanical environment is needed where the position of the joint, the congruency of the bones and the loading and motion conditions are clinically relevant and can be modified in a controlled environment. An in vitro simulation methodology was developed and used to assess the effect of loading on a natural hip joint. Porcine hips were dissected and mounted in a single station hip simulator and tested under different loading scenarios. The loading and motion cycle consisted of a simplified gait cycle and three peak axial loading conditions were assessed (Normal, Overload and Overload Plus). Joints were lubricated with Ringer’s solution and tests were conducted for 4 hours. Photographs were taken and compared to characterise cartilage surface and labral tissue pre, during and post simulation. The results showed no evidence of damage to samples tested under normal loading conditions, whereas the samples tested under overload and overload plus conditions exhibited different severities of tears and detachment of the labrum at the antero-superior region. The location and severity of damage was consistent for samples tested under the same conditions; supporting the use of this methodology to investigate further effects of altered loading and motion on natural tissue.
format Online
Article
Text
id pubmed-9387788
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-93877882022-08-19 An in vitro methodology for experimental simulation on the natural hip joint Jimenez-Cruz, David Dubey, Mudit Board, Tim Williams, Sophie PLoS One Research Article Different hip pathologies can cause geometric variation of the acetabulum and femoral head. These variations have been considered as an underlying mechanism that affects the tribology of the natural hip joint and changes the stress distribution on the articular surface, potentially leading to joint degradation. To improve understanding of the damage mechanisms and abnormal mechanics of the hip joint, a reliable in-vitro methodology that represents the in vivo mechanical environment is needed where the position of the joint, the congruency of the bones and the loading and motion conditions are clinically relevant and can be modified in a controlled environment. An in vitro simulation methodology was developed and used to assess the effect of loading on a natural hip joint. Porcine hips were dissected and mounted in a single station hip simulator and tested under different loading scenarios. The loading and motion cycle consisted of a simplified gait cycle and three peak axial loading conditions were assessed (Normal, Overload and Overload Plus). Joints were lubricated with Ringer’s solution and tests were conducted for 4 hours. Photographs were taken and compared to characterise cartilage surface and labral tissue pre, during and post simulation. The results showed no evidence of damage to samples tested under normal loading conditions, whereas the samples tested under overload and overload plus conditions exhibited different severities of tears and detachment of the labrum at the antero-superior region. The location and severity of damage was consistent for samples tested under the same conditions; supporting the use of this methodology to investigate further effects of altered loading and motion on natural tissue. Public Library of Science 2022-08-18 /pmc/articles/PMC9387788/ /pubmed/35980907 http://dx.doi.org/10.1371/journal.pone.0272264 Text en © 2022 Jimenez-Cruz et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Jimenez-Cruz, David
Dubey, Mudit
Board, Tim
Williams, Sophie
An in vitro methodology for experimental simulation on the natural hip joint
title An in vitro methodology for experimental simulation on the natural hip joint
title_full An in vitro methodology for experimental simulation on the natural hip joint
title_fullStr An in vitro methodology for experimental simulation on the natural hip joint
title_full_unstemmed An in vitro methodology for experimental simulation on the natural hip joint
title_short An in vitro methodology for experimental simulation on the natural hip joint
title_sort in vitro methodology for experimental simulation on the natural hip joint
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9387788/
https://www.ncbi.nlm.nih.gov/pubmed/35980907
http://dx.doi.org/10.1371/journal.pone.0272264
work_keys_str_mv AT jimenezcruzdavid aninvitromethodologyforexperimentalsimulationonthenaturalhipjoint
AT dubeymudit aninvitromethodologyforexperimentalsimulationonthenaturalhipjoint
AT boardtim aninvitromethodologyforexperimentalsimulationonthenaturalhipjoint
AT williamssophie aninvitromethodologyforexperimentalsimulationonthenaturalhipjoint
AT jimenezcruzdavid invitromethodologyforexperimentalsimulationonthenaturalhipjoint
AT dubeymudit invitromethodologyforexperimentalsimulationonthenaturalhipjoint
AT boardtim invitromethodologyforexperimentalsimulationonthenaturalhipjoint
AT williamssophie invitromethodologyforexperimentalsimulationonthenaturalhipjoint