Cargando…

Large-scale distributed linear algebra with tensor processing units

We have repurposed Google tensor processing units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs’ fast intercore interconnects (ICIs), physically two-dimensional network topology, and high-bandwidth memory (HBM) permi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lewis, Adam G. M., Beall, Jackson, Ganahl, Martin, Hauru, Markus, Mallick, Shrestha Basu, Vidal, Guifre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388123/
https://www.ncbi.nlm.nih.gov/pubmed/35939669
http://dx.doi.org/10.1073/pnas.2122762119
Descripción
Sumario:We have repurposed Google tensor processing units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs’ fast intercore interconnects (ICIs), physically two-dimensional network topology, and high-bandwidth memory (HBM) permit distributed matrix multiplication algorithms to rapidly become computationally bound. In this regime, the matrix-multiply units (MXUs) dominate the runtime, yielding impressive scaling, performance, and raw size: Operating in float32 precision, a full 2,048-core pod of third-generation TPUs can multiply two matrices with linear size [Formula: see text] in about 2 min. Via curated algorithms emphasizing large, single-core matrix multiplications, other tasks in dense linear algebra can similarly scale. As examples, we present 1) QR decomposition; 2) resolution of linear systems; and 3) the computation of matrix functions by polynomial iteration, demonstrated by the matrix polar factorization.