Cargando…
Large-scale distributed linear algebra with tensor processing units
We have repurposed Google tensor processing units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs’ fast intercore interconnects (ICIs), physically two-dimensional network topology, and high-bandwidth memory (HBM) permi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388123/ https://www.ncbi.nlm.nih.gov/pubmed/35939669 http://dx.doi.org/10.1073/pnas.2122762119 |
Sumario: | We have repurposed Google tensor processing units (TPUs), application-specific chips developed for machine learning, into large-scale dense linear algebra supercomputers. The TPUs’ fast intercore interconnects (ICIs), physically two-dimensional network topology, and high-bandwidth memory (HBM) permit distributed matrix multiplication algorithms to rapidly become computationally bound. In this regime, the matrix-multiply units (MXUs) dominate the runtime, yielding impressive scaling, performance, and raw size: Operating in float32 precision, a full 2,048-core pod of third-generation TPUs can multiply two matrices with linear size [Formula: see text] in about 2 min. Via curated algorithms emphasizing large, single-core matrix multiplications, other tasks in dense linear algebra can similarly scale. As examples, we present 1) QR decomposition; 2) resolution of linear systems; and 3) the computation of matrix functions by polynomial iteration, demonstrated by the matrix polar factorization. |
---|