Cargando…
Deep learning model-assisted detection of kidney stones on computed tomography
INTRODUCTION: The aim of this study was to investigate the success of a deep learning model in detecting kidney stones in different planes according to stone size on unenhanced computed tomography (CT) images. MATERIALS AND METHODS: This retrospective study included 455 patients who underwent CT sca...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Urologia
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388181/ https://www.ncbi.nlm.nih.gov/pubmed/35838509 http://dx.doi.org/10.1590/S1677-5538.IBJU.2022.0132 |
Sumario: | INTRODUCTION: The aim of this study was to investigate the success of a deep learning model in detecting kidney stones in different planes according to stone size on unenhanced computed tomography (CT) images. MATERIALS AND METHODS: This retrospective study included 455 patients who underwent CT scanning for kidney stones between January 2016 and January 2020; of them, 405 were diagnosed with kidney stones and 50 were not. Patients with renal stones of 0–1 cm, 1–2 cm, and >2 cm in size were classified into groups 1, 2, and 3, respectively. Two radiologists reviewed 2,959 CT images of 455 patients in three planes. Subsequently, these CT images were evaluated using a deep learning model. The accuracy rate, sensitivity, specificity, and positive and negative predictive values of the deep learning model were determined. RESULTS: The training group accuracy rates of the deep learning model were 98.2%, 99.1%, and 97.3% in the axial plane; 99.1%, 98.2%, and 97.3% in the coronal plane; and 98.2%, 98.2%, and 98.2% in the sagittal plane, respectively. The testing group accuracy rates of the deep learning model were 78%, 68% and 70% in the axial plane; 63%, 72%, and 64% in the coronal plane; and 85%, 89%, and 93% in the sagittal plane, respectively. CONCLUSIONS: The use of deep learning algorithms for the detection of kidney stones is reliable and effective. Additionally, these algorithms can reduce the reporting time and cost of CT-dependent urolithiasis detection, leading to early diagnosis and management. |
---|