Cargando…
Deep learning model-assisted detection of kidney stones on computed tomography
INTRODUCTION: The aim of this study was to investigate the success of a deep learning model in detecting kidney stones in different planes according to stone size on unenhanced computed tomography (CT) images. MATERIALS AND METHODS: This retrospective study included 455 patients who underwent CT sca...
Autores principales: | Caglayan, Alper, Horsanali, Mustafa Ozan, Kocadurdu, Kenan, Ismailoglu, Eren, Guneyli, Serkan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sociedade Brasileira de Urologia
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388181/ https://www.ncbi.nlm.nih.gov/pubmed/35838509 http://dx.doi.org/10.1590/S1677-5538.IBJU.2022.0132 |
Ejemplares similares
-
Computed tomography evaluation of pancreatic steatosis: correlation with COVID-19 prognosis
por: Guneyli, Serkan, et al.
Publicado: (2021) -
Computed tomography window affects kidney stones measurements
por: Danilovic, Alexandre, et al.
Publicado: (2019) -
Whortleberry protects kidney against the cisplatin-induced nephrotoxicity: an experimental study
por: Eren, Huseyin, et al.
Publicado: (2018) -
Renal Cell Carcinoma and Visceral Adipose Index: a new risk parameter
por: Otunctemur, Alper, et al.
Publicado: (2016) -
Clinical significance of renal cortical thickness in patients with chronic kidney disease
por: Korkmaz, Mehmet, et al.
Publicado: (2018)