Cargando…
Deep Learning-Based Data Augmentation and Model Fusion for Automatic Arrhythmia Identification and Classification Algorithms
Automated ECG-based arrhythmia detection is critical for early cardiac disease prevention and diagnosis. Recently, deep learning algorithms have been widely applied for arrhythmia detection with great success. However, the lack of labeled ECG data and low classification accuracy can have a significa...
Autores principales: | Ma, Shuai, Cui, Jianfeng, Xiao, Weidong, Liu, Lijuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388256/ https://www.ncbi.nlm.nih.gov/pubmed/35990162 http://dx.doi.org/10.1155/2022/1577778 |
Ejemplares similares
-
ACCV: automatic classification algorithm of cataract video based on deep learning
por: Hu, Shenming, et al.
Publicado: (2021) -
Deep Learning Modeling of Cardiac Arrhythmia Classification on Information Feature Fusion Image with Attention Mechanism
por: Zhang, Mingming, et al.
Publicado: (2023) -
Automatic Detection and Identification of Defects by Deep Learning Algorithms from Pulsed Thermography Data
por: Fang, Qiang, et al.
Publicado: (2023) -
Efficient Lightweight Multimodel Deep Fusion Based on ECG for Arrhythmia Classification
por: Hammad, Mohamed, et al.
Publicado: (2022) -
A Deep Neural Network Ensemble Classifier with Focal Loss for Automatic Arrhythmia Classification
por: Wu, Han, et al.
Publicado: (2022)