Cargando…
Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388407/ https://www.ncbi.nlm.nih.gov/pubmed/35833997 http://dx.doi.org/10.1007/s00384-022-04215-6 |
_version_ | 1784770218837409792 |
---|---|
author | Chen, Xijie Wang, Wenhui Chen, Junguo Xu, Liang He, Xiaosheng Lan, Ping Hu, Jiancong Lian, Lei |
author_facet | Chen, Xijie Wang, Wenhui Chen, Junguo Xu, Liang He, Xiaosheng Lan, Ping Hu, Jiancong Lian, Lei |
author_sort | Chen, Xijie |
collection | PubMed |
description | |
format | Online Article Text |
id | pubmed-9388407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-93884072022-08-20 Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost Chen, Xijie Wang, Wenhui Chen, Junguo Xu, Liang He, Xiaosheng Lan, Ping Hu, Jiancong Lian, Lei Int J Colorectal Dis Correction Springer Berlin Heidelberg 2022-07-14 2022 /pmc/articles/PMC9388407/ /pubmed/35833997 http://dx.doi.org/10.1007/s00384-022-04215-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Correction Chen, Xijie Wang, Wenhui Chen, Junguo Xu, Liang He, Xiaosheng Lan, Ping Hu, Jiancong Lian, Lei Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost |
title | Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost |
title_full | Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost |
title_fullStr | Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost |
title_full_unstemmed | Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost |
title_short | Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost |
title_sort | correction to: predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using xgboost |
topic | Correction |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388407/ https://www.ncbi.nlm.nih.gov/pubmed/35833997 http://dx.doi.org/10.1007/s00384-022-04215-6 |
work_keys_str_mv | AT chenxijie correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost AT wangwenhui correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost AT chenjunguo correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost AT xuliang correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost AT hexiaosheng correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost AT lanping correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost AT hujiancong correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost AT lianlei correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost |