Cargando…

Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost

Detalles Bibliográficos
Autores principales: Chen, Xijie, Wang, Wenhui, Chen, Junguo, Xu, Liang, He, Xiaosheng, Lan, Ping, Hu, Jiancong, Lian, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388407/
https://www.ncbi.nlm.nih.gov/pubmed/35833997
http://dx.doi.org/10.1007/s00384-022-04215-6
_version_ 1784770218837409792
author Chen, Xijie
Wang, Wenhui
Chen, Junguo
Xu, Liang
He, Xiaosheng
Lan, Ping
Hu, Jiancong
Lian, Lei
author_facet Chen, Xijie
Wang, Wenhui
Chen, Junguo
Xu, Liang
He, Xiaosheng
Lan, Ping
Hu, Jiancong
Lian, Lei
author_sort Chen, Xijie
collection PubMed
description
format Online
Article
Text
id pubmed-9388407
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-93884072022-08-20 Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost Chen, Xijie Wang, Wenhui Chen, Junguo Xu, Liang He, Xiaosheng Lan, Ping Hu, Jiancong Lian, Lei Int J Colorectal Dis Correction Springer Berlin Heidelberg 2022-07-14 2022 /pmc/articles/PMC9388407/ /pubmed/35833997 http://dx.doi.org/10.1007/s00384-022-04215-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Correction
Chen, Xijie
Wang, Wenhui
Chen, Junguo
Xu, Liang
He, Xiaosheng
Lan, Ping
Hu, Jiancong
Lian, Lei
Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
title Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
title_full Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
title_fullStr Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
title_full_unstemmed Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
title_short Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
title_sort correction to: predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using xgboost
topic Correction
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388407/
https://www.ncbi.nlm.nih.gov/pubmed/35833997
http://dx.doi.org/10.1007/s00384-022-04215-6
work_keys_str_mv AT chenxijie correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost
AT wangwenhui correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost
AT chenjunguo correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost
AT xuliang correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost
AT hexiaosheng correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost
AT lanping correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost
AT hujiancong correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost
AT lianlei correctiontopredictingpathologiccompleteresponseinlocallyadvancedrectalcancerpatientsafterneoadjuvanttherapyamachinelearningmodelusingxgboost