Cargando…
Correction to: Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
Autores principales: | Chen, Xijie, Wang, Wenhui, Chen, Junguo, Xu, Liang, He, Xiaosheng, Lan, Ping, Hu, Jiancong, Lian, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388407/ https://www.ncbi.nlm.nih.gov/pubmed/35833997 http://dx.doi.org/10.1007/s00384-022-04215-6 |
Ejemplares similares
-
Predicting pathologic complete response in locally advanced rectal cancer patients after neoadjuvant therapy: a machine learning model using XGBoost
por: Chen, Xijie, et al.
Publicado: (2022) -
Endoscopy-Based Deep Convolutional Neural Network Predicts Response to Neoadjuvant Treatment for Locally Advanced Rectal Cancer
por: Chen, Xijie, et al.
Publicado: (2022) -
Machine learning for predicting pathological complete response in patients with locally advanced rectal cancer after neoadjuvant chemoradiotherapy
por: Huang, Chun-Ming, et al.
Publicado: (2020) -
Radiomics Signature Based on Support Vector Machines for the Prediction of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer
por: Li, Chao, et al.
Publicado: (2023) -
Morphologic predictors of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer
por: Zhang, Chongda, et al.
Publicado: (2017)